結果
| 問題 |
No.3343 Distance Sum of Large Tree
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-11-13 22:58:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 5,048 bytes |
| コンパイル時間 | 2,457 ms |
| コンパイル使用メモリ | 219,080 KB |
| 実行使用メモリ | 814,532 KB |
| 最終ジャッジ日時 | 2025-11-13 22:58:33 |
| 合計ジャッジ時間 | 5,329 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | RE * 5 MLE * 1 -- * 24 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
//入力が必ず-mod<=a<modの時.
template<const int mod> //mod<2^30.
struct modint{ //mod変更が不可能.
public:
long long v;
static void setmod(int m){} //飾り.
static constexpr long long getmod(){return mod;}
modint():v(0){}
template<typename T>
modint(T a):v(a){if(v < 0) v += mod;}
long long val()const{return v;}
modint &operator=(const modint &b) = default;
modint &operator+()const{return (*this);}
modint operator-()const{return modint(0)-(*this);}
modint operator+(const modint b)const{return modint(v)+=b;}
modint operator-(const modint b)const{return modint(v)-=b;}
modint operator*(const modint b)const{return modint(v)*=b;}
modint operator/(const modint b)const{return modint(v)/=b;}
modint &operator+=(const modint b){
v += b.v; if(v >= mod) v -= mod;
return *this;
}
modint &operator-=(const modint b){
v -= b.v; if(v < 0) v += mod;
return *this;
}
modint &operator*=(const modint b){v = v*b.v%mod; return *this;}
modint &operator/=(modint b){ //b!=0 mod素数が必須.
assert(b.v != 0);
(*this) *= b.pow(mod-2);
return *this;
}
modint pow(long long n)const{
modint ret = 1,p = v;
if(n < 0) p = p.inv(),n = -n;
while(n){
if(n&1) ret *= p;
p *= p; n >>= 1;
}
return ret;
}
modint inv()const{return pow(mod-2);} //素数mod必須.
modint &operator++(){*this += 1; return *this;}
modint &operator--(){*this -= 1; return *this;}
modint operator++(int){modint ret = *this; *this += 1; return ret;}
modint operator--(int){modint ret = *this; *this -= 1; return ret;}
friend bool operator==(const modint a,const modint b){return a.v==b.v;}
friend bool operator!=(const modint a,const modint b){return a.v!=b.v;}
friend bool operator<(const modint a,const modint b){return a.v<b.v;}
friend bool operator<=(const modint a,const modint b){return a.v<=b.v;}
friend bool operator>=(const modint a,const modint b){return a.v>=b.v;}
friend bool operator>(const modint a,const modint b){return a.v>b.v;}
friend ostream &operator<<(ostream &os,const modint a){return os<<a.v;}
friend istream &operator>>(istream &is,modint &a){ //入力はmodをとってくれる.
long long x; is >> x; x %= mod;
a = modint(x); return is;
}
};
using mint = modint<998244353>; const long long mod = 998244353;
vector<int> BFS(vector<vector<int>> &Graph,int start){
int N = Graph.size();
vector<int> ret(N,-1);
queue<int> Q;
ret.at(start) = 0,Q.push(start);
while(Q.size()){
int pos = Q.front(); Q.pop();
for(auto to : Graph.at(pos)){
if(ret.at(to) != -1) continue;
ret.at(to) = ret.at(pos)+1;
Q.push(to);
}
}
return ret;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N; cin >> N;
vector<int> A(N),B(N-1),C(N-1),P(N-1);
for(auto &a : A) cin >> a;
for(auto &a : B) cin >> a,a--;
for(auto &a : C) cin >> a,a--;
for(auto &a : P) cin >> a,a--;
{
int n = accumulate(A.begin(),A.end(),0);
vector<vector<int>> G(n);
vector<int> S(N);
for(int i=0; i<N-1; i++){
S.at(i+1) = S.at(i)+A.at(i);
int b = B.at(i),c = C.at(i),p = P.at(i);
int pos = S.at(p)+c,to = S.at(i+1)+b;
G.at(pos).push_back(to);
G.at(to).push_back(pos);
}
for(int i=0; i<N; i++){
int a = A.at(i);
for(int k=0; k<A.at(i)-1; k++){
int pos = S.at(i)+k,to = pos+1;
G.at(pos).push_back(to);
G.at(to).push_back(pos);
}
}
mint jury = 0;
for(int i=0; i<n; i++) for(auto d : BFS(G,i)) jury += d;
cout << jury << endl;
}
vector<vector<tuple<int,int,int>>> Graph(N);
for(int i=0; i<N-1; i++){
int b = B.at(i),c = C.at(i),p = P.at(i);
Graph.at(p).push_back({c,b,i+1});
}
for(auto &g : Graph) sort(g.begin(),g.end());
mint answer = 0,div6 = mint(1)/6;
auto dfs = [&](auto dfs,int pos,long long back) -> pair<mint,mint> {
mint siz = 0,sum = 0;
long long a = A.at(pos);
answer += a*((a-1)*a/2%mod)%mod;
answer -= div6*((a-1)*a%mod)*((2*a-1)%mod);
auto f = [&](long long x) -> mint {return (x*(x+1)/2%mod + (a-x)*(a-x-1)/2%mod)%mod;};
siz += a,sum += f(back);
mint ksiz = 0,ksum = 0,ksum2 = 0;
for(auto [b,c,to] : Graph.at(pos)){
auto [k1,k2] = dfs(dfs,to,c);
answer += k2*a+k1*f(b);
siz += k1,sum += k2+k1*(abs(b-back)%mod);
answer += (ksiz*b-ksum)*k1;
answer += ksiz*k2+ksum2*k1;
ksiz += k1,ksum += k1*b,ksum2 += k2;
}
return {siz,sum+siz};
};
dfs(dfs,0,0);
cout << answer*2 << "\n";
}