結果

問題 No.235 めぐるはめぐる (5)
コンテスト
ユーザー norioc
提出日時 2025-11-15 06:46:07
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 11,379 bytes
コンパイル時間 338 ms
コンパイル使用メモリ 82,356 KB
実行使用メモリ 296,944 KB
最終ジャッジ日時 2025-11-15 06:46:32
合計ジャッジ時間 24,103 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 2
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections.abc import Callable
from collections import defaultdict
import typing


def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


class LazySegTree:
    def __init__(
            self,
            op: typing.Callable[[typing.Any, typing.Any], typing.Any],
            e: typing.Any,
            mapping: typing.Callable[[typing.Any, typing.Any], typing.Any],
            composition: typing.Callable[[typing.Any, typing.Any], typing.Any],
            id_: typing.Any,
            v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e
        self._mapping = mapping
        self._composition = composition
        self._id = id_

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)
        self._lz = [self._id] * self._size
        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        for i in range(self._log, 0, -1):
            self._push(p >> i)
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        p += self._size
        for i in range(self._log, 0, -1):
            self._push(p >> i)
        return self._d[p]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n

        if left == right:
            return self._e

        left += self._size
        right += self._size

        for i in range(self._log, 0, -1):
            if ((left >> i) << i) != left:
                self._push(left >> i)
            if ((right >> i) << i) != right:
                self._push(right >> i)

        sml = self._e
        smr = self._e
        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def apply(self, left: int, right: typing.Optional[int] = None,
              f: typing.Optional[typing.Any] = None) -> None:
        assert f is not None

        if right is None:
            p = left
            assert 0 <= left < self._n

            p += self._size
            for i in range(self._log, 0, -1):
                self._push(p >> i)
            self._d[p] = self._mapping(f, self._d[p])
            for i in range(1, self._log + 1):
                self._update(p >> i)
        else:
            assert 0 <= left <= right <= self._n
            if left == right:
                return

            left += self._size
            right += self._size

            for i in range(self._log, 0, -1):
                if ((left >> i) << i) != left:
                    self._push(left >> i)
                if ((right >> i) << i) != right:
                    self._push((right - 1) >> i)

            l2 = left
            r2 = right
            while left < right:
                if left & 1:
                    self._all_apply(left, f)
                    left += 1
                if right & 1:
                    right -= 1
                    self._all_apply(right, f)
                left >>= 1
                right >>= 1
            left = l2
            right = r2

            for i in range(1, self._log + 1):
                if ((left >> i) << i) != left:
                    self._update(left >> i)
                if ((right >> i) << i) != right:
                    self._update((right - 1) >> i)

    def max_right(
            self, left: int, g: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert g(self._e)

        if left == self._n:
            return self._n

        left += self._size
        for i in range(self._log, 0, -1):
            self._push(left >> i)

        sm = self._e
        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not g(self._op(sm, self._d[left])):
                while left < self._size:
                    self._push(left)
                    left *= 2
                    if g(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int, g: typing.Any) -> int:
        assert 0 <= right <= self._n
        assert g(self._e)

        if right == 0:
            return 0

        right += self._size
        for i in range(self._log, 0, -1):
            self._push((right - 1) >> i)

        sm = self._e
        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not g(self._op(self._d[right], sm)):
                while right < self._size:
                    self._push(right)
                    right = 2 * right + 1
                    if g(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])

    def _all_apply(self, k: int, f: typing.Any) -> None:
        self._d[k] = self._mapping(f, self._d[k])
        if k < self._size:
            self._lz[k] = self._composition(f, self._lz[k])

    def _push(self, k: int) -> None:
        self._all_apply(2 * k, self._lz[k])
        self._all_apply(2 * k + 1, self._lz[k])
        self._lz[k] = self._id


class HLD:
    def __init__(self, n: int, adj: dict[int, list[int]], root=0):
        """
        n: 頂点数
        adj: {頂点: [隣接頂点, ...]}
        root: 根
        """
        self.n = n
        self.vid = [-1] * n
        self.inv = [0] * n
        self.par = [-1] * n
        self.depth = [0] * n
        self.subsize = [1] * n
        self.head = [0] * n
        self.prev = [-1] * n
        self.next = [-1] * n
        self.types = [0] * n

        self._build([root], adj)

    def _build(self, roots, adj):
        pos = 0
        for i, root in enumerate(roots):
            self._decide_heavy_edge(root, adj)
            pos = self._reconstruct(root, i, pos, adj)

    def _decide_heavy_edge(self, root: int, adj):
        """部分木サイズを計算し、heavy edge を決定"""
        st = [(root, 0)]
        self.par[root] = -1
        self.depth[root] = 0
        while st:
            v, i = st[-1]
            if i < len(adj[v]):
                to = adj[v][i]
                st[-1] = (v, i+1)
                if to == self.par[v]: continue
                self.par[to] = v
                self.depth[to] = self.depth[v] + 1
                st.append((to, 0))
            else:
                st.pop()
                maxsize = 0
                for to in adj[v]:
                    if to == self.par[v]: continue
                    self.subsize[v] += self.subsize[to]
                    if self.subsize[to] > maxsize:
                        maxsize = self.subsize[to]
                        self.prev[to] = v
                        self.next[v] = to

    def _reconstruct(self, root: int, curtype: int, pos: int, adj):
        """heavy-pathごとに Euler順 vid を割り当てる"""
        st = [root]
        while st:
            start = st.pop()
            v = start
            while v != -1:
                self.types[v] = curtype
                self.vid[v] = pos
                self.inv[pos] = v
                self.head[v] = start
                pos += 1
                # 軽辺の子はあとでstackに積む
                for to in adj[v]:
                    if to != self.par[v] and to != self.next[v]:
                        st.append(to)
                v = self.next[v]

        return pos

    def foreach_nodes(self, u: int, v: int, f: Callable[[int, int], None]):
        """頂点 u, v 間の頂点区間に対してコールバック [l, r] を呼ぶ"""
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u

            f(max(self.vid[self.head[v]], self.vid[u]), self.vid[v])
            if self.head[u] != self.head[v]:
                v = self.par[self.head[v]]
            else:
                break

    # u-v間の辺区間に対してコールバックを呼ぶ
    def foreach_edges(self, u: int, v: int, f: Callable[[int, int], None]):
        """頂点 u, v 間の辺区間に対してコールバック [l, r] を呼ぶ"""
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u

            if self.head[u] != self.head[v]:
                f(self.vid[self.head[v]], self.vid[v])
                v = self.par[self.head[v]]
            else:
                if u != v:
                    f(self.vid[u]+1, self.vid[v])
                break

    def lca(self, u: int, v: int) -> int:
        while True:
            if self.vid[u] > self.vid[v]:
                u, v = v, u
            if self.head[u] == self.head[v]:
                return u
            v = self.par[self.head[v]]


# 値データ
class Data:
    def __init__(self, val: int, coef: int):
        self.val  = val   # 区間全体の和
        self.coef = coef  # 係数


# 遅延データ
Lazy = int


# 値データを合成
def op(a: Data, b: Data) -> Data:
    return Data(a.val + b.val, a.coef * b.coef)


# 遅延データを値データに反映 : f(x)
def mapping(f: Lazy, x: Data) -> Data:
    val = x.val + x.coef * f
    return Data(val, x.coef)


# 遅延データを伝搬
# 二つの遅延データを合成 : (f . g)
def composition(f: Lazy, g: Lazy) -> Lazy:
    return f + g


MOD = 10**9 + 7
N = int(input())
S = list(map(int, input().split()))
C = list(map(int, input().split()))

adj = defaultdict(list)
for _ in range(N-1):
    A, B = map(lambda x: int(x)-1, input().split())
    adj[A].append(B)
    adj[B].append(A)

hld = HLD(N, adj, root=0)

xs = [Data(s, c) for s, c in zip(S, C)]
segt = LazySegTree(
    op=op,
    e=Data(0, 0),
    mapping=mapping,
    composition=composition,
    id_=0,
    v=[xs[hld.vid[i]] for i in range(N)])

Q = int(input())
for _ in range(Q):
    qs = list(map(int, input().split()))
    match qs:
        case (0, x, y, z):
            x -= 1
            y -= 1
            def f(l, r):
                segt.apply(l, r+1, z)

            hld.foreach_nodes(x, y, f)

        case (1, x, y):
            x -= 1
            y -= 1
            a = hld.vid[x]
            b = hld.vid[y]
            if a > b:
                a, b = b, a
            res = segt.prod(a, b+1)
            print(res.val)
0