結果

問題 No.3346 Tree to DAG
コンテスト
ユーザー akakimidori
提出日時 2025-11-15 11:36:23
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 27,527 bytes
コンパイル時間 12,831 ms
コンパイル使用メモリ 404,964 KB
実行使用メモリ 15,960 KB
最終ジャッジ日時 2025-11-15 11:36:42
合計ジャッジ時間 16,948 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 39
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `std::io::Write`
  --> src/main.rs:39:5
   |
39 | use std::io::Write;
   |     ^^^^^^^^^^^^^^
   |
   = note: `#[warn(unused_imports)]` on by default

warning: unused variable: `v`
  --> src/main.rs:91:24
   |
91 |     fn init(&mut self, v: usize) -> Self::Value {
   |                        ^ help: if this is intentional, prefix it with an underscore: `_v`
   |
   = note: `#[warn(unused_variables)]` on by default

warning: unused variable: `e`
  --> src/main.rs:96:59
   |
96 |     fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value {
   |                                                           ^ help: if this is intentional, prefix it with an underscore: `_e`

warning: type alias `Map` is never used
  --> src/main.rs:41:6
   |
41 | type Map<K, V> = BTreeMap<K, V>;
   |      ^^^
   |
   = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
  --> src/main.rs:42:6
   |
42 | type Set<T> = BTreeSet<T>;
   |      ^^^

warning: type alias `Deque` is never used
  --> src/main.rs:43:6
   |
43 | type Deque<T> = VecDeque<T>;
   |      ^^^^^

ソースコード

diff #

// DAGの個数の最大値
// サイクルについて包除で個数を考えてみる
// 確率を考える
// p=1/2 とする
//
// 1. 1つのパス上にある時
// A, B という距離でとってきた時
// 1
// - p^(A+2-1) - p^(B+2-1) - p^(A+B+2-1)
// + 3 * p^(A+B+3-1)
// - 0
//
// 2. 三叉路
// A, B, C
// 1
// - p^(A+B+2-1) - p^(B+C+2-1) - p^(C+A+2-1)
// + 3 p^(A+B+C+3-1)
// - 0
//
// どっちも距離が大きい方がいい
// 各頂点から遠い頂点のtop3 を計算する
// 三叉路取れる時はそっちで、そうでない次数2については上の値を出す
// 最大値を取る
// と言いたいが桁数が大きすぎる
// +と-が混在しているのが厄介で、どうするか
//
// sum_{0<=i}x_i * p^i
// |x_i| <= 1
// という形にする
// 非ゼロ項が少ないことを活かす
// -2 < sum_i x_i p^i < 2
// となるので差分を管理して前から足し引き, 2倍という手順を踏んでいく
// 差が4以上になると確定するのでそれをやればいい
//
// いや|x| の最大値をVとして
// (-2V, 2V) となるので4Vで判定とかの方がいいか?

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn main() {
    input! {
        n: usize,
        e: [(usize1, usize1); n - 1],
    }
    let mut solver = Rerooting::new(n, R);
    for (a, b) in e {
        solver.add_edge(a, b, ());
    }
    let dp = solver.solve();
    let mut ans = Data::new(vec![]);
    for dp in dp {
        if dp[1] <= 0 {
            continue;
        }
        let mut x = vec![(0, 1)];
        if dp[2] > 0 {
            for i in 0..3 {
                x.push((dp[i] + dp[(i + 1) % 3] + 2 - 1, -1));
                x.push((dp[0] + dp[1] + dp[2] + 3 - 1, 1));
            }
        } else {
            let (a, b) = (dp[0], dp[1]);
            x.push((a + 2 - 1, -1));
            x.push((b + 2 - 1, -1));
            x.push((a + b + 2 - 1, -1));
            x.push((a + b + 3 - 1, 3));
        }
        let x = Data::new(x);
        ans = ans.max(x);
    }
    let mut base = M::zero();
    for &(x, v) in ans.data.iter() {
        let p = M::new(2).inv().pow(x as u64);
        base += M::from(v as i64) * p;
    }
    base *= M::new(2).pow(n as u64 + 2);
    println!("{}", base);
}

type M = ModInt<998244353>;

struct R;
impl RerootingOperator for R {
    type Value = TopK<i32, 3>;
    type Edge = ();
    fn init(&mut self, v: usize) -> Self::Value {
        let mut res = Self::Value::new([std::i32::MIN / 2; 3]);
        res.update(0);
        res
    }
    fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value {
        let mut p = p.clone();
        p.update(c[0] + 1);
        p
    }
}

// 場所、値
#[derive(Clone)]
pub struct Data {
    data: Vec<(i32, i32)>,
    max: i32,
}

impl Data {
    pub fn new(mut x: Vec<(i32, i32)>) -> Self {
        x.sort();
        x.dedup_by(|a, b| a.0 == b.0 && {
            b.1 += a.1;
            true
        });
        x.retain(|p| p.1 != 0);
        let m = x.iter().map(|p| p.1.abs()).max().unwrap_or(0);
        Self {
            data: x,
            max: m,
        }
    }
}

impl Ord for Data {
    fn cmp(&self, rhs: &Self) -> std::cmp::Ordering {
        let mut val = 0i32;
        let mut x = std::i32::MIN;
        let mut y = 0;
        let mut z = 0;
        let d = self.max + rhs.max;
        while y < self.data.len() || z < rhs.data.len() {
            let p = self.data.get(y).cloned();
            let q = rhs.data.get(z).cloned();
            let nx = if let (Some(p), Some(q)) = (p, q) {
                p.0.min(q.0)
            } else {
                p.or(q).unwrap().0
            };
            val *= 1 << 2.min(nx.saturating_sub(x));
            if val.abs() >= 4 * d {
                break;
            }
            if let Some(p) = p {
                if p.0 == nx {
                    val += p.1;
                    y += 1;
                }
            }
            if let Some(p) = q {
                if p.0 == nx {
                    val -= p.1;
                    z += 1;
                }
            }
            x = nx + 1;
            val *= 2;
        }
        val.cmp(&0)
    }
}

impl PartialOrd for Data {
    fn partial_cmp(&self, rhs: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(rhs))
    }
}

impl PartialEq for Data {
    fn eq(&self, rhs: &Self) -> bool {
        self.cmp(rhs) == std::cmp::Ordering::Equal
    }
}

impl Eq for Data {}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}

impl<const M: u32> From<i64> for ModInt<{ M }> {
    fn from(val: i64) -> ModInt<{ M }> {
        ModInt::new(val.rem_euclid(M as i64) as u32)
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
    fact: Vec<ModInt<MOD>>,
    ifact: Vec<ModInt<MOD>>,
    inv: Vec<ModInt<MOD>>,
}

impl<const MOD: u32> Precalc<MOD> {
    pub fn new(size: usize) -> Self {
        let mut fact = vec![ModInt::one(); size + 1];
        let mut ifact = vec![ModInt::one(); size + 1];
        let mut inv = vec![ModInt::one(); size + 1];
        for i in 2..=size {
            fact[i] = fact[i - 1] * ModInt::from(i);
        }
        ifact[size] = fact[size].inv();
        for i in (2..=size).rev() {
            inv[i] = ifact[i] * fact[i - 1];
            ifact[i - 1] = ifact[i] * ModInt::from(i);
        }
        Self { fact, ifact, inv }
    }
    pub fn fact(&self, n: usize) -> ModInt<MOD> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<MOD> {
        self.ifact[n]
    }
    pub fn inv(&self, n: usize) -> ModInt<MOD> {
        assert!(0 < n);
        self.inv[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
        if n < k {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

// ---------- begin array op ----------

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end array op ----------
// ---------- begin trait ----------

use std::ops::*;

pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Group: Zero + Sub<Output = Self> + Neg<Output = Self> {}
pub trait SemiRing: Zero + One {}
pub trait Ring: SemiRing + Group {}
pub trait Field: Ring + Div<Output = Self> {}

impl<T> Group for T where T: Zero + Sub<Output = Self> + Neg<Output = Self> {}
impl<T> SemiRing for T where T: Zero + One {}
impl<T> Ring for T where T: SemiRing + Group {}
impl<T> Field for T where T: Ring + Div<Output = Self> {}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

pub fn one<T: One>() -> T {
    T::one()
}

pub fn pow<T: One + Clone>(mut r: T, mut n: usize) -> T {
    let mut t = one();
    while n > 0 {
        if n & 1 == 1 {
            t = t * r.clone();
        }
        r = r.clone() * r;
        n >>= 1;
    }
    t
}

pub fn pow_sum<T: SemiRing + Clone>(mut r: T, mut n: usize) -> T {
    let mut ans = T::zero();
    let mut sum = T::one();
    while n > 0 {
        if n & 1 == 1 {
            ans = ans * r.clone() + sum.clone();
        }
        sum = sum * (T::one() + r.clone());
        r = r.clone() * r;
        n >>= 1;
    }
    ans
}
// ---------- end trait ----------
// ---------- begin Rerooting ----------
pub trait RerootingOperator {
    type Value: Clone;
    type Edge: Clone;
    fn init(&mut self, v: usize) -> Self::Value;
    fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value;
}

pub struct Rerooting<R: RerootingOperator> {
    manager: R,
    size: usize,
    edge: Vec<(usize, usize, R::Edge, R::Edge)>,
}

impl<R: RerootingOperator> Rerooting<R> {
    pub fn new(size: usize, manager: R) -> Self {
        assert!(size > 0 && size < 10usize.pow(8));
        Rerooting {
            manager: manager,
            size: size,
            edge: vec![],
        }
    }
    pub fn add_edge(&mut self, a: usize, b: usize, cost: R::Edge) {
        assert!(a < self.size && b < self.size && a != b);
        self.add_edge_bi(a, b, cost.clone(), cost);
    }
    pub fn add_edge_bi(&mut self, a: usize, b: usize, ab: R::Edge, ba: R::Edge) {
        assert!(a < self.size && b < self.size && a != b);
        self.edge.push((a, b, ab, ba));
    }
    pub fn solve(&mut self) -> Vec<R::Value> {
        let size = self.size;
        let mut graph = vec![vec![]; size];
        for e in self.edge.iter() {
            graph[e.0].push((e.1, e.2.clone()));
            graph[e.1].push((e.0, e.3.clone()));
        }
        let root = 0;
        let mut topo = vec![root];
        let mut parent = vec![root; size];
        let mut parent_edge: Vec<Option<R::Edge>> = (0..size).map(|_| None).collect();
        for i in 0..size {
            let v = topo[i];
            let child = std::mem::take(&mut graph[v]);
            for e in child.iter() {
                let k = graph[e.0].iter().position(|e| e.0 == v).unwrap();
                let c = graph[e.0].remove(k).1;
                parent_edge[e.0] = Some(c);
                parent[e.0] = v;
                topo.push(e.0);
            }
            graph[v] = child;
        }
        let manager = &mut self.manager;
        let mut down: Vec<_> = (0..size).map(|v| manager.init(v)).collect();
        for &v in topo.iter().rev() {
            for e in graph[v].iter() {
                down[v] = manager.merge(&down[v], &down[e.0], &e.1);
            }
        }
        let mut up: Vec<_> = (0..size).map(|v| manager.init(v)).collect();
        let mut stack = vec![];
        for &v in topo.iter() {
            if let Some(e) = parent_edge[v].take() {
                let ini = manager.init(v);
                up[v] = manager.merge(&ini, &up[v], &e);
            }
            if !graph[v].is_empty() {
                stack.push((graph[v].as_slice(), up[v].clone()));
                while let Some((g, val)) = stack.pop() {
                    if g.len() == 1 {
                        up[g[0].0] = val;
                    } else {
                        let m = g.len() / 2;
                        let (a, b) = g.split_at(m);
                        for a in [(a, b), (b, a)].iter() {
                            let mut p = val.clone();
                            for a in a.0.iter() {
                                p = manager.merge(&p, &down[a.0], &a.1);
                            }
                            stack.push((a.1, p));
                        }
                    }
                }
            }
            for e in graph[v].iter() {
                up[v] = manager.merge(&up[v], &down[e.0], &e.1);
            }
        }
        up
    }
}
// ---------- end Rerooting ----------
// 大きいやつN個を管理する
// ---------- begin top-k ----------
#[derive(Clone, Debug)]
pub struct TopK<T, const N: usize>([T; N]);

impl<T, const N: usize> TopK<T, N>
where
    T: Ord + Copy,
{
    pub fn new(a: [T; N]) -> Self {
        assert!(a.windows(2).all(|a| a[0] >= a[1]));
        Self(a)
    }
    pub fn update(&mut self, v: T) {
        for i in 0..N {
            if v >= self.0[i] {
                self.0[i..].rotate_right(1);
                self.0[i] = v;
                return;
            }
        }
    }
    pub fn merge(&self, rhs: &Self) -> Self {
        let mut res = self.0;
        let mut i = 0;
        let mut j = 0;
        for res in res.iter_mut() {
            if self.0[i] >= rhs.0[j] {
                *res = self.0[i];
                i += 1;
            } else {
                *res = rhs.0[j];
                j += 1;
            }
        }
        Self::new(res)
    }
}

impl<T, const N: usize> std::ops::Index<usize> for TopK<T, N> {
    type Output = T;
    fn index(&self, x: usize) -> &Self::Output {
        &self.0[x]
    }
}
// ---------- end top-k ----------
0