結果
| 問題 | No.3398 Accuracy of Integer Division Approximate Function 2 |
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2025-11-17 00:02:37 |
| 言語 | Haskell (9.12.2) |
| 結果 |
AC
|
| 実行時間 | 101 ms / 2,000 ms |
| コード長 | 4,251 bytes |
| 記録 | |
| コンパイル時間 | 1,816 ms |
| コンパイル使用メモリ | 206,340 KB |
| 実行使用メモリ | 10,368 KB |
| 最終ジャッジ日時 | 2025-12-04 23:32:52 |
| 合計ジャッジ時間 | 3,210 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.10.1/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) [2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -O2 #-}
module Main where
import Control.Monad (replicateM, replicateM_)
import Data.ByteString.Char8 qualified as BS
import Data.Maybe (fromJust)
tuplify2 (x : y : _) = (x, y)
tuplify2 _ = undefined
-- Input functions with ByteString
readInt = fst . fromJust . BS.readInteger
readIntTuple = tuplify2 . map readInt . BS.words
readIntList = map readInt . BS.words
getInt = readInt <$> BS.getLine
getIntList = readIntList <$> BS.getLine
getIntNList n = map readIntList <$> replicateM (fromIntegral n) BS.getLine
getIntMatrix = map readIntList . BS.lines <$> BS.getContents
getIntTuple = readIntTuple <$> BS.getLine
getIntNTuples n = map readIntTuple <$> replicateM (fromIntegral n) BS.getLine
getIntTuples = map readIntTuple . BS.lines <$> BS.getContents
-- |
-- Max Weighted Floor (mwf)
-- mwf(n,m,a,b,c,d) = max_{0 <= x < n} a*x + b*floor((c*x + d)/m)
-- を返す非再帰(反復)実装。
--
-- 前提:
-- - n > 0, m > 0
--
-- 計算量/メモリ:
-- - 時間: O(log m)(ユークリッド互除法的再帰による構造縮約)
-- - 追加メモリ: O(1)
mwf :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer
mwf n0 m0 a0 b0 c0 d0 =
let !sum0 = 0
!max0 = b0 * (d0 `div` m0) -- x = 0 のとき
in loop max0 sum0 n0 m0 a0 b0 c0 d0
where
loop ::
Integer ->
Integer ->
Integer ->
Integer ->
Integer ->
Integer ->
Integer ->
Integer ->
Integer
loop !maxAcc !sumAcc !n !m !a !b !c !d =
let (q1, c') = c `divMod` m
!a' = a + b * q1
(q2, d') = d `divMod` m
!sumAcc' = sumAcc + b * q2
!n1 = n - 1
!ymax = (c' * n1 + d') `div` m
!maxAcc' = max maxAcc (max sumAcc' (sumAcc' + a' * n1 + b * ymax))
in if ymax == 0 || (a >= 0 && b >= 0) || (a <= 0 && b <= 0)
then maxAcc'
else
if a' >= 0
then loop maxAcc' sumAcc' ymax c' b a' m (m - d' - 1)
else loop maxAcc' (sumAcc' + a' + b) ymax c' b a' m (m - d' - 1)
-- |
-- max_{l <= x < r} a*x + b*floor((c*x + d)/m) を返す。
--
-- 既存の mwf(n,m,...)(0 <= x < n)を用いる。
-- 前提: l < r, m > 0
mwfLr :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer
mwfLr l r m a b c d
| l >= r || m <= 0 = error "mwfLR: require l < r and m > 0"
| otherwise =
let n = r - l
(q, d') = (c * l + d) `divMod` m
in a * l + b * q + mwf n m a b c d'
-- |
-- Δ(D,A,B,x) = floor(x/D) - floor( (floor(x/A) * floor(A*B/D)) / B ) において、
-- u_min(D,A,B,K) = min { u >= 0 | Δ(D,A,B,u*D) > K } を半開区間二分探索 [0, A'BK+2) で求め、
-- x_min(D,A,B,K) = min { x >= 0 | Δ(D,A,B,x) > K } = u_min(D,A,B,K)*D を返す(解なしは -1)。
--
-- 前提:
-- * D > 0, A > 0, B > 0, K >= 0(整数)
computeXmin :: Integer -> Integer -> Integer -> Integer -> Integer
computeXmin d a b k
| d <= 0 || a <= 0 || b <= 0 || k < 0 = error "computeXmin: invalid input"
| otherwise =
let g = gcd d a
d' = d `div` g
a' = a `div` g
(m', r') = (a' * b) `divMod` d'
tDelta = b * k
in if r' == 0 && d' * k + 1 >= a'
then (-1) -- 解なし
else
-- 半開区間 [0, hi) で二分探索
let lo0 = 0
hi0 = a' * b * k + 2
loop !lo !hi
| lo + 1 >= hi = lo
| otherwise =
let mid = (lo + hi) `div` 2
fMid = mwf mid a' b (-m') d' 0
in if fMid <= tDelta then loop mid hi else loop lo mid
uMin = loop lo0 hi0
in d * uMin
-- |
-- 検算用 Δ(D,A,B,x)。
deltaVal :: Integer -> Integer -> Integer -> Integer -> Integer
deltaVal d a b x =
let p = x `div` d
m = (a * b) `div` d
q = ((x `div` a) * m) `div` b
in p - q
-- |
-- 入出力(複数ケース)
solve :: IO ()
solve = do
t <- getInt
replicateM_ (fromIntegral t :: Int) $ do
[d, a, b, k] <- getIntList
print (computeXmin d a b k)
main :: IO ()
main = solve