結果
| 問題 |
No.3373 Partial Complement Tree
|
| コンテスト | |
| ユーザー |
yamate11
|
| 提出日時 | 2025-11-21 22:10:53 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 239 ms / 2,000 ms |
| コード長 | 24,469 bytes |
| コンパイル時間 | 3,488 ms |
| コンパイル使用メモリ | 308,636 KB |
| 実行使用メモリ | 55,880 KB |
| 最終ジャッジ日時 | 2025-11-21 22:11:01 |
| 合計ジャッジ時間 | 8,161 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 24 |
ソースコード
#include <bits/stdc++.h>
#include <cassert>
using namespace std;
using ll = long long int;
using u64 = unsigned long long;
using pll = pair<ll, ll>;
// #include <atcoder/all>
// using namespace atcoder;
#define REP(i, a, b) for (ll i = (a); i < (b); i++)
#define REPrev(i, a, b) for (ll i = (a); i >= (b); i--)
#define ALL(coll) (coll).begin(), (coll).end()
#define SIZE(v) ((ll)((v).size()))
#define REPOUT(i, a, b, exp, sep) REP(i, (a), (b)) cout << (exp) << (i + 1 == (b) ? "" : (sep)); cout << "\n"
// @@ !! LIM(tree mod)
// ---- inserted library file tree.cc
struct function_error : runtime_error {
function_error(const string& msg) : runtime_error(msg) {}
};
struct Tree {
struct pe_t {
ll peer;
ll edge;
pe_t(ll peer_ = -1, ll edge_ = -1) : peer(peer_), edge(edge_) {}
static const pe_t end_object;
};
struct nbr_t {
ll parent_idx; // pe[parent_idx] is the parent
vector<pe_t> pe;
nbr_t() : parent_idx(-1), pe() {}
};
template<bool get_peer, bool excl_parent>
struct nbr_iterator {
const nbr_t& body;
ll pe_idx;
explicit nbr_iterator(const nbr_t& body_, ll pe_idx_) : body(body_), pe_idx(pe_idx_) {
if constexpr (excl_parent) {
if (pe_idx == body.parent_idx) pe_idx++;
}
}
auto operator*() const -> typename conditional<get_peer, ll, const pe_t&>::type {
if constexpr (get_peer) return body.pe[pe_idx].peer;
else return body.pe[pe_idx];
}
const nbr_iterator& operator++() {
pe_idx++;
if constexpr (excl_parent) {
if (pe_idx == body.parent_idx) pe_idx++;
}
return *this;
}
bool operator !=(const nbr_iterator& o) const { return pe_idx != o.pe_idx; }
};
template<bool get_peer, bool excl_parent = true>
struct children_view {
const nbr_t& body;
children_view(const nbr_t& body_) : body(body_) {}
nbr_iterator<get_peer, excl_parent> begin() const { return nbr_iterator<get_peer, excl_parent>(body, 0); }
nbr_iterator<get_peer, excl_parent> end() { return nbr_iterator<get_peer, excl_parent>(body, std::ssize(body.pe)); }
};
ll numNodes;
ll root;
vector<nbr_t> _nbr;
vector<pair<ll, ll>> _edges; // (x, y) in _edges => x < y
vector<ll> _stsize;
vector<ll> _depth;
vector<ll> _euler_in;
vector<ll> _euler_out;
vector<pair<ll, bool>> _euler_edge;
vector<vector<vector<ll>>> _lca_tbl;
constexpr static bool use_depth = true;
constexpr static bool use_stsize = true;
constexpr static bool use_euler = true;
Tree(ll numNodes_, ll root_ = 0) : numNodes(numNodes_), root(root_), _nbr(numNodes_) {
if (numNodes == 1) _set_parent();
}
ll add_edge(ll x, ll y) {
ll i = ssize(_edges);
if (i >= numNodes - 1) throw range_error("add_edge");
_nbr[x].pe.emplace_back(y, i);
_nbr[y].pe.emplace_back(x, i);
_edges.emplace_back(min(x, y), max(x, y));
if (i + 1 == numNodes - 1) _set_parent();
return i;
}
void _set_parent() { // called from constructor, add_edge() and change_root()
_nbr[root].parent_idx = ssize(_nbr[root].pe);
if constexpr (use_depth) _depth.resize(numNodes);
if constexpr (use_stsize) _stsize.resize(numNodes);
if constexpr (use_euler) {
_euler_in.resize(numNodes);
_euler_out.resize(numNodes);
_euler_edge.resize(2 * numNodes);
}
ll euler_idx = 0;
auto dfs = [&](auto rF, ll nd, ll pt, ll edge) -> void {
if constexpr (use_depth) _depth[nd] = pt == -1 ? 0 : _depth[pt] + 1;
if constexpr (use_stsize) _stsize[nd] = 1;
if constexpr (use_euler) {
_euler_edge[euler_idx] = {edge, 0};
_euler_in[nd] = euler_idx;
euler_idx++;
}
for (ll i = 0; i < ssize(_nbr[nd].pe); i++) {
auto [c_id, c_eg] = _nbr[nd].pe[i];
if (c_id == pt) _nbr[nd].parent_idx = i;
else {
rF(rF, c_id, nd, c_eg);
if constexpr (use_stsize) _stsize[nd] += _stsize[c_id];
}
}
if constexpr (use_euler) {
_euler_edge[euler_idx] = {edge, 1};
_euler_out[nd] = euler_idx;
euler_idx++;
}
};
dfs(dfs, root, -1, numNodes - 1);
}
pe_t parent_pe(ll nd) { return nd == root ? pe_t(-1, -1) : _nbr[nd].pe[_nbr[nd].parent_idx]; }
ll parent(ll nd) { return nd == root ? -1 : parent_pe(nd).peer; }
ll num_children(ll nd) { return _nbr[nd].pe.size() - (_nbr[nd].parent_idx == (ll)_nbr[nd].pe.size() ? 0 : 1); }
pe_t child_pe(ll nd, ll idx) { return _nbr[nd].pe[idx < _nbr[nd].parent_idx ? idx : idx + 1]; }
ll child(ll nd, ll idx) { return child_pe(nd, idx).peer; }
ll child_edge(ll nd, ll idx) { return child_pe(nd, idx).edge; }
auto children_pe(ll nd) { return children_view<false>(_nbr[nd]); }
auto children(ll nd) { return children_view<true>(_nbr[nd]); }
auto neighbor_pe(ll nd) { return children_view<false, false>(_nbr[nd]); }
auto neighbor(ll nd) { return children_view<true, false>(_nbr[nd]); }
ll stsize(ll nd) {
if constexpr (use_stsize) return _stsize[nd];
else throw function_error("use_stsize should be set to call stsize.");
}
ll depth(ll nd) {
if constexpr (use_depth) return _depth[nd];
else throw function_error("use_depth should be set to call depth.");
}
ll _enc_node_pair(ll x, ll y) { return (x + 1) * (numNodes + 1) + (y + 1); }
ll edge_idx(ll x, ll y) {
auto [py, ey] = parent_pe(y);
if (x == py) return ey;
auto [px, ex] = parent_pe(x);
if (y == px) return ex;
return -1LL;
}
pair<ll, ll> nodes_of_edge(ll e, ll mode = 0) {
if (mode == -1) {
return _edges[e];
}else {
const auto& [x, y] = _edges[e];
if ((x == parent(y)) == (mode == 0)) return {x, y};
else return {y, x};
}
}
void _set_euler() {
_euler_in.resize(numNodes);
_euler_out.resize(numNodes);
vector<pair<ll, ll>> stack{{root, -1}};
ll idx = 0;
while (not stack.empty()) {
auto& [nd, cidx] = stack.back();
if (cidx == -1) _euler_in[nd] = idx++;
cidx++;
if (cidx < num_children(nd)) stack.emplace_back(child(nd, cidx), -1);
else {
_euler_out[nd] = idx++;
stack.pop_back();
}
}
}
ll euler_in(ll nd) {
if constexpr (use_euler) return _euler_in[nd];
else throw function_error("use_euler should be set to call euler_in.");
}
ll euler_out(ll nd) {
if constexpr (use_euler) return _euler_out[nd];
else throw function_error("use_euler should be set to call euler_out.");
}
tuple<ll, ll, ll> euler_edge(ll idx) {
if constexpr (use_euler) {
if (idx == 0) return {numNodes - 1, -1, root};
else if (idx == 2 * numNodes - 1) return {numNodes - 1, root, -1};
else {
auto [e, b] = _euler_edge[idx];
auto [x, y] = nodes_of_edge(e, b);
return {e, x, y};
}
}
else throw function_error("use_euler should be set to call euler_out.");
}
// Lowest Common Ancestor
ll lca(ll x, ll y) {
ll kmax = 1 + bit_width((unsigned)numNodes);
ll lastmove = 2 * numNodes - 2;
if (_lca_tbl.empty()) {
auto choose = [&](const auto& vec, ll a, ll b) -> ll {
if (0 <= b and b <= lastmove and vec[b] >= 0) return depth(vec[a]) < depth(vec[b]) ? vec[a] : vec[b];
else return -1;
};
_lca_tbl.resize(kmax + 1, vector(2, vector(lastmove + 1, -1LL)));
for (ll s = 0; s < 2; s++) for (ll i = 0; i <= lastmove; i++) _lca_tbl[0][s][i] = get<2>(euler_edge(i));
for (ll k = 1; k <= kmax; k++) {
ll prev_len = 1 << (k - 1);
for (ll s = 0; s < 2; s++) {
for (ll i = 0; i <= lastmove; i++) _lca_tbl[k][0][i] = choose(_lca_tbl[k - 1][0], i, i + prev_len);
for (ll i = 0; i <= lastmove; i++) _lca_tbl[k][1][i] = choose(_lca_tbl[k - 1][1], i, i - prev_len);
}
}
}
ll a = euler_in(x), b = euler_in(y);
if (a > b) swap(a, b);
ll k = countr_zero(bit_floor((unsigned)(b - a + 1)));
ll i = _lca_tbl[k][0][a];
ll j = _lca_tbl[k][1][b];
return depth(i) < depth(j) ? i : j;
}
// the path between two nodes (list of nodes, including x and y)
vector<ll> nnpath(ll x, ll y) {
vector<ll> ret;
ll c = lca(x, y);
for ( ; x != c; x = parent(x)) ret.push_back(x);
ret.push_back(c);
ll len = (ll)ret.size();
for ( ; y != c; y = parent(y)) ret.push_back(y);
reverse(ret.begin() + len, ret.end());
return ret;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
tuple<ll, ll, ll, ll, ll> diameter() {
if (numNodes == 1) return {0, 0, 0, 0, 0};
if (numNodes == 2) return {1, 0, 1, 0, 1};
depth(root); // to ensure that _depth is correctly built
ll nd0 = max_element(_depth.begin(), _depth.end()) - _depth.begin();
ll nd1 = -1, ct0 = -1, ct1 = -1;
ll diam = 0;
auto dfs2 = [&](auto rF, ll nd, ll dp, ll pt) -> bool {
// DFS from nd0, which is different from the root.
bool ret = false;
ll numChildren = 0;
for (auto [cld, _e] : _nbr[nd].pe) {
if (cld == pt) continue;
numChildren++;
bool bbb = rF(rF, cld, dp + 1, nd);
ret = ret || bbb;
}
if (numChildren > 0) {
if (ret) {
if (diam % 2 == 0) {
if (dp == diam / 2) ct0 = ct1 = nd;
}else {
if (dp == diam / 2) ct0 = nd;
else if (dp == diam / 2 + 1) ct1 = nd;
}
}
}else {
if (dp > diam) {
diam = dp;
nd1 = nd;
ret = true;
}
}
return ret;
};
dfs2(dfs2, nd0, 0, -1);
return {diam, nd0, nd1, ct0, ct1};
}
#pragma GCC diagnostic pop
pair<ll, ll> centroids() {
auto dfs = [&](auto rF, ll nd) -> pair<ll, ll> {
for (ll c : children(nd)) {
ll a = 2 * stsize(c);
if (a > numNodes) return rF(rF, c);
if (a == numNodes) return make_pair(nd, c);
}
return make_pair(nd, -1);
};
return dfs(dfs, root);
}
void change_root(ll newRoot) {
_stsize.clear();
_depth.clear();
_euler_in.clear();
_euler_out.clear();
_lca_tbl.clear();
root = newRoot;
_set_parent();
}
};
const Tree::pe_t end_object{-1, -1};
template <typename M>
auto reroot(Tree& tree, const M& unit, auto add, auto mod1, auto mod2) {
using A = decltype(mod2(M(), 0));
vector<A> result(tree.numNodes);
vector<vector<M>> sum_left(tree.numNodes);
vector<vector<M>> sum_right(tree.numNodes);
auto dfs1 = [&](const auto& recF, ll nd) -> A {
ll k = tree.num_children(nd);
vector<M> ws(k);
for (ll i = 0; i < k; i++) {
ll c = tree.child(nd, i);
ws[i] = mod1(recF(recF, c), nd, c);
}
sum_left[nd].resize(k + 1, unit);
sum_right[nd].resize(k + 1, unit);
for (ll i = 0; i < k; i++) sum_left[nd][i + 1] = add(sum_left[nd][i], ws[i]);
for (ll i = k - 1; i >= 0; i--) sum_right[nd][i] = add(sum_right[nd][i + 1], ws[i]);
return mod2(sum_right[nd][0], nd);
};
dfs1(dfs1, tree.root);
auto dfs2 = [&](const auto& recF, ll nd, const M& t) -> void {
result[nd] = mod2(add(sum_right[nd][0], t), nd);
ll k = tree.num_children(nd);
for (ll i = 0; i < k; i++) {
ll c = tree.child(nd, i);
M excl_c = add(sum_left[nd][i], sum_right[nd][i + 1]);
M m_for_c = add(excl_c, t);
A v_for_c = mod2(m_for_c, nd);
M pass_c = mod1(v_for_c, c, nd);
recF(recF, c, pass_c);
}
};
dfs2(dfs2, tree.root, unit);
return result;
}
template <typename M>
vector<M> reroot(Tree& tree, const M& unit, auto add, auto mod1) {
return reroot<M>(tree, unit, add, mod1, [](const M& m, ll i) -> M { return m; });
}
// ---- end tree.cc
// ---- inserted library file algOp.cc
// Common definitions
// zero, one, inverse
template<typename T>
const T zero(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)0; }
else { return t.zero(); }
}
template<typename T>
const T one(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)1; }
else { return t.one(); }
}
template<typename T>
const T inverse(const T& t) {
if constexpr (is_floating_point_v<T>) { return 1.0 / t; }
else { return t.inverse(); }
}
#ifdef BOOST_MP_CPP_INT_HPP
template<> const cpp_int zero(const cpp_int& t) { return cpp_int(0); }
template<> const cpp_int one(const cpp_int& t) { return cpp_int(1); }
#endif // BOOST_MP_CPP_INT_HPP
// begin -- detection ideom
// cf. https://blog.tartanllama.xyz/detection-idiom/
namespace tartan_detail {
template <template <class...> class Trait, class Enabler, class... Args>
struct is_detected : false_type{};
template <template <class...> class Trait, class... Args>
struct is_detected<Trait, void_t<Trait<Args...>>, Args...> : true_type{};
}
template <template <class...> class Trait, class... Args>
using is_detected = typename tartan_detail::is_detected<Trait, void, Args...>::type;
// end -- detection ideom
template<typename T>
// using subst_add_t = decltype(T::subst_add(declval<typename T::value_type &>(), declval<typename T::value_type>()));
using subst_add_t = decltype(T::subst_add);
template<typename T>
using has_subst_add = is_detected<subst_add_t, T>;
template<typename T>
using add_t = decltype(T::add);
template<typename T>
using has_add = is_detected<add_t, T>;
template<typename T>
using subst_mult_t = decltype(T::subst_mult);
template<typename T>
using has_subst_mult = is_detected<subst_mult_t, T>;
template<typename T>
using mult_t = decltype(T::mult);
template<typename T>
using has_mult = is_detected<mult_t, T>;
template<typename T>
using subst_subt_t = decltype(T::subst_subt);
template<typename T>
using has_subst_subt = is_detected<subst_subt_t, T>;
template<typename T>
using subt_t = decltype(T::subt);
template<typename T>
using has_subt = is_detected<subt_t, T>;
template <typename Opdef>
struct MyAlg {
using T = typename Opdef::value_type;
using value_type = T;
T v;
MyAlg() {}
MyAlg(const T& v_) : v(v_) {}
MyAlg(T&& v_) : v(move(v_)) {}
bool operator==(MyAlg o) const { return v == o.v; }
bool operator!=(MyAlg o) const { return v != o.v; }
operator T() const { return v; }
MyAlg zero() const { return MyAlg(Opdef::zero(v)); }
MyAlg one() const { return MyAlg(Opdef::one(v)); }
MyAlg inverse() const { return MyAlg(Opdef::inverse(v)); }
MyAlg operator/=(const MyAlg& o) { return *this *= o.inverse(); }
MyAlg operator/(const MyAlg& o) const { return (*this) * o.inverse(); }
MyAlg operator-() const { return zero() - *this; }
MyAlg& operator +=(const MyAlg& o) {
if constexpr (has_subst_add<Opdef>::value) {
Opdef::subst_add(v, o.v);
return *this;
}else if constexpr (has_add<Opdef>::value) {
v = Opdef::add(v, o.v);
return *this;
}else static_assert("either subst_add or add is needed.");
}
MyAlg operator +(const MyAlg& o) const {
if constexpr (has_add<Opdef>::value) {
return MyAlg(Opdef::add(v, o.v));
}else if constexpr (has_subst_add<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_add(ret.v, o.v);
return ret;
}else static_assert("either subst_add or add is needed.");
}
MyAlg& operator *=(const MyAlg& o) {
if constexpr (has_subst_mult<Opdef>::value) {
Opdef::subst_mult(v, o.v);
return *this;
}else if constexpr (has_mult<Opdef>::value) {
v = Opdef::mult(v, o.v);
return *this;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg operator *(const MyAlg& o) const {
if constexpr (has_mult<Opdef>::value) {
return MyAlg(Opdef::mult(v, o.v));
}else if constexpr (has_subst_mult<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_mult(ret.v, o.v);
return ret;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg& operator -=(const MyAlg& o) {
if constexpr (has_subst_subt<Opdef>::value) {
Opdef::subst_subt(v, o.v);
return *this;
}else if constexpr (has_subt<Opdef>::value) {
v = Opdef::subt(v, o.v);
return *this;
}else static_assert("either subst_subt or subt is needed.");
}
MyAlg operator -(const MyAlg& o) const {
if constexpr (has_subt<Opdef>::value) {
return MyAlg(Opdef::subt(v, o.v));
}else if constexpr (has_subst_subt<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_subt(ret.v, o.v);
return ret;
}else static_assert("either subst_subt or subt is needed.");
}
friend istream& operator >>(istream& is, MyAlg& t) { is >> t.v; return is; }
friend ostream& operator <<(ostream& os, const MyAlg& t) { os << t.v; return os; }
};
// ---- end algOp.cc
// ---- inserted function f:gcd from util.cc
// auto [g, s, t] = eGCD(a, b)
// g == gcd(|a|, |b|) and as + bt == g
// It guarantees that max(|s|, |t|) <= max(|a| / g, |b| / g) (when g != 0)
// Note that gcd(a, 0) == gcd(0, a) == a.
template<typename INT=ll>
tuple<INT, INT, INT> eGCD(INT a, INT b) {
INT sa = a < 0 ? -1 : 1;
INT ta = 0;
INT za = a * sa;
INT sb = 0;
INT tb = b < 0 ? -1 : 1;
INT zb = b * tb;
while (zb != 0) {
INT q = za / zb;
INT r = za % zb;
za = zb;
zb = r;
INT new_sb = sa - q * sb;
sa = sb;
sb = new_sb;
INT new_tb = ta - q * tb;
ta = tb;
tb = new_tb;
}
return {za, sa, ta};
}
pair<ll, ll> crt_sub(ll a1, ll x1, ll a2, ll x2) {
// DLOGKL("crt_sub", a1, x1, a2, x2);
a1 = a1 % x1;
a2 = a2 % x2;
auto [g, s, t] = eGCD(x1, -x2);
ll gq = (a2 - a1) / g;
ll gr = (a2 - a1) % g;
if (gr != 0) return {-1, -1};
s *= gq;
t *= gq;
ll z = x1 / g * x2;
// DLOGK(z);
s = s % (x2 / g);
ll r = (x1 * s + a1) % z;
// DLOGK(r);
if (r < 0) r += z;
// DLOGK(r);
return {r, z};
};
// Chinese Remainder Theorem
//
// r = crt(a1, x1, a2, x2)
// ==> r = a1 (mod x1); r = a2 (mod x2); 0 <= r < lcm(x1, x2)
// If no such r exists, returns -1
// Note: x1 and x2 should >= 1. a1 and a2 can be negative or zero.
//
// r = crt(as, xs)
// ==> for all i. r = as[i] (mod xs[i]); 0 <= r < lcm(xs)
// If no such r exists, returns -1
// Note: xs[i] should >= 1. as[i] can be negative or zero.
// It should hold: len(xs) == len(as) > 0
ll crt(ll a1, ll x1, ll a2, ll x2) { return crt_sub(a1, x1, a2, x2).first; }
ll crt(vector<ll> as, vector<ll> xs) {
// DLOGKL("crt", as, xs);
assert(xs.size() == as.size() && xs.size() > 0);
ll r = as[0];
ll z = xs[0];
for (size_t i = 1; i < xs.size(); i++) {
// DLOGK(i, r, z, as[i], xs[i]);
tie(r, z) = crt_sub(r, z, as[i], xs[i]);
// DLOGK(r, z);
if (r == -1) return -1;
}
return r;
}
// ---- end f:gcd
// ---- inserted library file mod.cc
template<int mod=0, typename INT=ll>
struct FpG { // G for General
static INT dyn_mod;
static INT getMod() {
if (mod == 0) return dyn_mod;
else return (INT)mod;
}
// Effective only when mod == 0.
// _mod must be less than the half of the maximum value of INT.
static void setMod(INT _mod) {
dyn_mod = _mod;
}
static INT _conv(INT x) {
if (x >= getMod()) return x % getMod();
if (x >= 0) return x;
if (x >= -getMod()) return x + getMod();
INT y = x % getMod();
if (y == 0) return 0;
return y + getMod();
}
INT val;
FpG(INT t = 0) : val(_conv(t)) {}
FpG(const FpG& t) : val(t.val) {}
FpG& operator =(const FpG& t) { val = t.val; return *this; }
FpG& operator =(INT t) { val = _conv(t); return *this; }
FpG& operator +=(const FpG& t) {
val += t.val;
if (val >= getMod()) val -= getMod();
return *this;
}
FpG& operator -=(const FpG& t) {
val -= t.val;
if (val < 0) val += getMod();
return *this;
}
FpG& operator *=(const FpG& t) {
val = (val * t.val) % getMod();
return *this;
}
FpG inv() const {
if (val == 0) { throw runtime_error("FpG::inv(): called for zero."); }
auto [g, u, v] = eGCD(val, getMod());
if (g != 1) { throw runtime_error("FpG::inv(): not co-prime."); }
return FpG(u);
}
FpG zero() const { return (FpG)0; }
FpG one() const { return (FpG)1; }
FpG inverse() const { return inv(); }
FpG& operator /=(const FpG& t) {
return (*this) *= t.inv();
}
FpG operator +(const FpG& t) const { return FpG(val) += t; }
FpG operator -(const FpG& t) const { return FpG(val) -= t; }
FpG operator *(const FpG& t) const { return FpG(val) *= t; }
FpG operator /(const FpG& t) const { return FpG(val) /= t; }
FpG operator -() const { return FpG(-val); }
bool operator ==(const FpG& t) const { return val == t.val; }
bool operator !=(const FpG& t) const { return val != t.val; }
operator INT() const { return val; }
friend FpG operator +(INT x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(INT x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(INT x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(INT x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(INT x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(INT x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, INT y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, INT y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, INT y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, INT y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, INT y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, INT y) { return x != FpG(y); }
/* The following are needed to avoid warnings in cases such as FpG x; x = 5 + x; rather than x = FpG(5) + x; */
friend FpG operator +(int x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(int x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(int x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(int x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(int x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(int x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, int y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, int y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, int y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, int y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, int y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, int y) { return x != FpG(y); }
friend istream& operator>> (istream& is, FpG& t) {
INT x; is >> x;
t = x;
return is;
}
friend ostream& operator<< (ostream& os, const FpG& t) {
os << t.val;
return os;
}
};
template<int mod, typename INT>
INT FpG<mod, INT>::dyn_mod;
template<typename T>
class Comb {
int nMax;
vector<T> vFact;
vector<T> vInvFact;
public:
Comb(int nm) : nMax(nm), vFact(nm+1), vInvFact(nm+1) {
vFact[0] = 1;
for (int i = 1; i <= nMax; i++) vFact[i] = i * vFact[i-1];
vInvFact.at(nMax) = (T)1 / vFact[nMax];
for (int i = nMax; i >= 1; i--) vInvFact[i-1] = i * vInvFact[i];
}
T fact(int n) { return vFact[n]; }
T binom(int n, int r) {
if (r < 0 || r > n) return (T)0;
return vFact[n] * vInvFact[r] * vInvFact[n-r];
}
T binom_dup(int n, int r) { return binom(n + r - 1, r); }
// The number of permutation extracting r from n.
T perm(int n, int r) {
return vFact[n] * vInvFact[n-r];
}
};
constexpr int primeA = 1'000'000'007;
constexpr int primeB = 998'244'353; // '
using FpA = FpG<primeA, ll>;
using FpB = FpG<primeB, ll>;
// ---- end mod.cc
// @@ !! LIM -- end mark --
using Fp = FpB;
int main(/* int argc, char *argv[] */) {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << setprecision(20);
auto solve = [&]() -> Fp {
ll N; cin >> N;
Tree tr(N);
REP(i, 0, N - 1) {
ll u, v; cin >> u >> v; u--; v--;
tr.add_edge(u, v);
}
vector vec(3, vector(N, 0LL));
REP(i, 0, N) vec[0][i] = tr.num_children(i);
REP(k, 1, 3) {
REP(i, 0, N) {
for (ll c : tr.children(i)) vec[k][i] += vec[k - 1][c];
}
}
Fp ans = 0;
REP(i, 0, N) {
ans += vec[2][i];
for (ll c : tr.children(i)) {
ans += Fp(tr.num_children(c)) * (tr.num_children(i) - 1);
}
}
return ans;
};
ll T; cin >> T;
REP(t, 0, T) cout << solve() << "\n";
return 0;
}
yamate11