結果
| 問題 | No.3394 Big Binom |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-12-01 00:47:24 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 47 ms / 2,000 ms |
| コード長 | 6,105 bytes |
| 記録 | |
| コンパイル時間 | 3,046 ms |
| コンパイル使用メモリ | 207,952 KB |
| 実行使用メモリ | 9,088 KB |
| 最終ジャッジ日時 | 2025-12-14 19:58:39 |
| 合計ジャッジ時間 | 4,682 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 22 |
ソースコード
// https://judge.yosupo.jp/submission/171341
#define PROBLEM "https://judge.yosupo.jp/problem/factorial"
#include <bits/stdc++.h>
using namespace std;
#include <iostream>
#include <atcoder/modint>
using mint = atcoder::modint998244353;
#include <atcoder/convolution>
#include <cmath>
#include <cassert>
#include <vector>
namespace suisen {
template <typename T, typename U = T>
struct factorial {
factorial() = default;
factorial(int n) { ensure(n); }
static void ensure(const int n) {
int sz = _fac.size();
if (n + 1 <= sz) return;
int new_size = std::max(n + 1, sz * 2);
_fac.resize(new_size), _fac_inv.resize(new_size);
for (int i = sz; i < new_size; ++i) _fac[i] = _fac[i - 1] * i;
_fac_inv[new_size - 1] = U(1) / _fac[new_size - 1];
for (int i = new_size - 1; i > sz; --i) _fac_inv[i - 1] = _fac_inv[i] * i;
}
T fac(const int i) {
ensure(i);
return _fac[i];
}
T operator()(int i) {
return fac(i);
}
U fac_inv(const int i) {
ensure(i);
return _fac_inv[i];
}
U binom(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[r] * _fac_inv[n - r];
}
U perm(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[n - r];
}
private:
static std::vector<T> _fac;
static std::vector<U> _fac_inv;
};
template <typename T, typename U>
std::vector<T> factorial<T, U>::_fac{ 1 };
template <typename T, typename U>
std::vector<U> factorial<T, U>::_fac_inv{ 1 };
} // namespace suisen
#include <atcoder/convolution>
namespace suisen {
template <typename mint>
std::vector<mint> shift_of_sampling_points(const std::vector<mint>& ys, mint t, int m) {
const int n = ys.size();
factorial<mint> fac(std::max(n, m));
std::vector<mint> b = [&] {
std::vector<mint> f(n), g(n);
for (int i = 0; i < n; ++i) {
f[i] = ys[i] * fac.fac_inv(i);
g[i] = (i & 1 ? -1 : 1) * fac.fac_inv(i);
}
std::vector<mint> b = atcoder::convolution(f, g);
b.resize(n);
return b;
}();
std::vector<mint> e = [&] {
std::vector<mint> c(n);
mint prd = 1;
std::reverse(b.begin(), b.end());
for (int i = 0; i < n; ++i) {
b[i] *= fac.fac(n - i - 1);
c[i] = prd * fac.fac_inv(i);
prd *= t - i;
}
std::vector<mint> e = atcoder::convolution(b, c);
e.resize(n);
return e;
}();
std::reverse(e.begin(), e.end());
for (int i = 0; i < n; ++i) {
e[i] *= fac.fac_inv(i);
}
std::vector<mint> f(m);
for (int i = 0; i < m; ++i) f[i] = fac.fac_inv(i);
std::vector<mint> res = atcoder::convolution(e, f);
res.resize(m);
for (int i = 0; i < m; ++i) res[i] *= fac.fac(i);
return res;
}
} // namespace suisen
namespace suisen {
template <typename mint>
struct FactorialLarge {
static constexpr int _p = mint::mod();
static constexpr int _log_b = 12;
static constexpr int _b = 1 << _log_b;
static constexpr int _q = _p >> _log_b;
FactorialLarge() {
// f_d(x) := (dx+1) * ... * (dx+d-1)
// Suppose that we have f_d(0),...,f_d(d-1).
// f_{2d}(x) = ((2dx+1) * ... * (2dx+d-1)) * (2dx+d) * (((2dx+d)+1) * ... * ((2dx+d)+d-1))
// = f_d(2x) * f_d(2x+1) * (2dx+d)
// We can calculate f_{2d}(0), ..., f_{2d}(2d-1) from f_d(0), f_d(1), ..., f_d(4d-2), f_d(4d-1)
// f_1
std::vector<mint> f{ 1 };
for (int i = 0; i < _log_b; ++i) {
std::vector<mint> g = shift_of_sampling_points<mint>(f, 1 << i, 3 << i);
const auto get = [&](int j) { return j < (1 << i) ? f[j] : g[j - (1 << i)]; };
f.resize(2 << i);
for (int j = 0; j < 2 << i; ++j) {
f[j] = get(2 * j) * get(2 * j + 1) * ((2 * j + 1) << i);
}
}
// f_B(x) = (x+1) * ... * (x+B-1)
if (_q > _b) {
std::vector<mint> g = shift_of_sampling_points<mint>(f, _b, _q - _b);
std::move(g.begin(), g.end(), std::back_inserter(f));
} else {
f.resize(_q);
}
for (int i = 0; i < _q; ++i) {
f[i] *= mint(i + 1) * _b;
}
// f[i] = (i*B + 1) * ... * (i*B + B)
_acc = std::move(f);
_acc.insert(_acc.begin(), 1);
for (int i = 1; i <= _q; ++i) {
_acc[i] *= _acc[i - 1];
}
}
mint operator()(long long n) {
if (_p <= n) return 0;
const int q = n >> _log_b, r = n & (_b - 1);
// n! = (qb)! * (n-r+1)(n-r+2)...(n)
mint ans = _acc[q];
for (int j = 0; j < r; ++j) {
ans *= mint::raw(n - j);
}
return ans;
}
private:
std::vector<mint> _acc;
};
} // namespace suisen
int main() {
suisen::FactorialLarge<mint> fact;
int n, k;
std::cin >> n >> k;
int m = 998244353;
if(n < m){
mint x = fact(n), y = fact(n-k), z = fact(k);
mint ans = x*y.inv()*z.inv();
cout << ans.val() << "\n";
}else{
if(m <= k || m <= n-k){
k = min(k, n-k);
mint ans = 1;
for(int i=0; i<k; i++) if(n-i != m) ans *= mint(n-i);
for(int i=1; i<=k; i++) ans *= mint(i).inv();
cout << ans.val() << "\n";
}else{
cout << 0 << "\n";
}
}
}