結果

問題 No.3408 1215 Segments
コンテスト
ユーザー sclara
提出日時 2025-12-02 12:46:57
言語 C++23
(gcc 13.3.0 + boost 1.89.0)
結果
AC  
実行時間 723 ms / 2,500 ms
コード長 15,181 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,522 ms
コンパイル使用メモリ 295,776 KB
実行使用メモリ 7,852 KB
最終ジャッジ日時 2025-12-14 23:35:57
合計ジャッジ時間 41,715 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef std::pair<long long, long long> P;
typedef std::priority_queue<P, std::vector<P>, std::greater<P>> PQ;
typedef std::complex<double> cd;

struct P3 {
    long long first, second, third;
};

struct P3P {
    P first, second, third;
};

struct compP3{
    bool operator()(const P3 &p1,const P3 &p2) const {
        if (p1.first != p2.first) return p1.first < p2.first;
        if (p1.second != p2.second) return p1.second < p2.second;
        else return p1.third < p2.third;
    }
};

struct gcompP3{
    bool operator()(const P3 &p1,const P3 &p2) const {
        if (p1.first != p2.first) return p1.first > p2.first;
        if (p1.second != p2.second) return p1.second > p2.second;
        else return p1.third > p2.third;
    }
};

const double PI = acos(-1.0);

bool ckran(int a, int n) {
    return (a >= 0 && a < n);
}

void yn (bool f) {
    if (f) std::cout << "Yes" << '\n';
    else std::cout << "No" << '\n';
}

long long pplus(P a) {
    return a.first + a.second;
}

long long pminus(P a) {
    return a.first - a.second;
}

long long ptime(P a) {
    return a.first * a.second;
}

long long pdiv(P a) {
    return a.first / a.second;
}

template<typename T, typename U>
bool chmax(T& a, U b) {
    if (a < b) {
        a = b;
        return true;
    } else {
        return false;
    }
}

template<typename T, typename U>
bool chmin(T& a, U b) {
    if (a > b) {
        a = b;
        return true;
    } else {
        return false;
    }
}

template<typename T>
void outspace(std::vector<T> a) {
    int n = a.size();
    for (int i = 0; i < n; ++i) {
        std::cout << a[i];
        if (i != n - 1) std::cout << " ";
        else std::cout << std::endl;
    }
}

void outspace(P a) {
    std::cout << a.first << ' ' << a.second << '\n';
}

template<typename T>
void outendl(std::vector<T> a) {
    int n = a.size();
    for (int i = 0; i < n; ++i) {
        std::cout << a[i] << '\n';
    }
}

void outdouble(long double a) {
    std::cout << std::fixed << std::setprecision(10) << a << std::endl;
}

std::vector<long long> lltovec(long long n, long long base = 10, long long minsize = -1) {
    std::vector<long long> res;
    while (minsize-- > 0 || n > 0) {
        res.push_back(n % base);
        n /= base;
    }
    // std::reverse(res.begin(), res.end());
    return res;
}

long long vectoll(std::vector<long long> vec, long long base = 10) {
    long long res = 0;
    std::reverse(vec.begin(), vec.end());
    for (auto i : vec) {
        res *= base;
        res += i;
    }
    std::reverse(vec.begin(), vec.end());
    return res;
}

class uftree {

    private:
    std::vector<int> union_find_tree;
    std::vector<int> rank;
    std::vector<int> nodes_count;

    public:

    uftree (int uftree_size) {
        union_find_tree.resize(uftree_size);
        rank.resize(uftree_size);
        nodes_count.resize(uftree_size);

        for (int i = 0; i < uftree_size; ++i) {
            union_find_tree[i] = i;
            rank[i] = 0;
            nodes_count[i] = 1;
        }
    }

    int find (int n) {
        if (union_find_tree[n] == n) return n;
        else {
            union_find_tree[n] = find(union_find_tree[n]);
            return union_find_tree[n];
        }
    }

    void unite (int x, int y) {
        x = find(x);
        y = find(y);

        if (x == y) return;

        if (rank[x] > rank[y]) {
            union_find_tree[y] = union_find_tree[x];
            nodes_count[x] += nodes_count[y];
        } else {
            union_find_tree[x] = union_find_tree[y];
            nodes_count[y] += nodes_count[x];
            if (rank[x] == rank[y]) rank[y]++;
        }
    }

    bool connected (int x, int y) {
        x = find(x);
        y = find(y);
        return x == y;
    }
    
    long long groupCount (int x) {
        x = find(x);
        return nodes_count[x];
    }

};


class maxSegmentTree {
    int n;
    std::vector<long long> tree, lazy;
    const long long MINI = -4e18;

    public:
    maxSegmentTree(int size) {
        n = size;
        tree.assign(4 * n, MINI);
        lazy.assign(4 * n, MINI);
    }

    void push(int node, int start, int end) {
        if (lazy[node] != MINI) {
            // 遅延値を現在のノードに適用
            tree[node] = std::max(tree[node], lazy[node]);

            // 子ノードに遅延値を伝播
            if (start != end) {
                lazy[node * 2] = std::max(lazy[node * 2], lazy[node]);
                lazy[node * 2 + 1] = std::max(lazy[node * 2 + 1], lazy[node]);
            }

            // 現在のノードの遅延値をクリア
            lazy[node] = MINI;
        }
    }

    void updateRange(int l, int r, long long value, int node = 1, int start = 0, int end = -1) {
        if (end == -1) end = n - 1;

        push(node, start, end);

        if (start > r || end < l) {
            // 完全に範囲外
            return;
        }

        if (start >= l && end <= r) {
            // 完全に範囲内
            lazy[node] = value;
            push(node, start, end);
            return;
        }

        // 部分的に範囲が重なる場合
        int mid = (start + end) / 2;
        updateRange(l, r, value, node * 2, start, mid);
        updateRange(l, r, value, node * 2 + 1, mid + 1, end);
        tree[node] = std::max(tree[node * 2], tree[node * 2 + 1]);
    }

    long long queryRange(int l, int r, int node = 1, int start = 0, int end = -1) {
        if (end == -1) end = n - 1;

        push(node, start, end);

        if (start > r || end < l) {
            // 完全に範囲外
            return MINI;
        }

        if (start >= l && end <= r) {
            // 完全に範囲内
            return tree[node];
        }

        // 部分的に範囲が重なる場合
        int mid = (start + end) / 2;
        long long leftQuery = queryRange(l, r, node * 2, start, mid);
        long long rightQuery = queryRange(l, r, node * 2 + 1, mid + 1, end);
        return std::max(leftQuery, rightQuery);
    }
};

class sumSegmentTree {
    int n;
    std::vector<long long> tree, lazy;

    public:
    sumSegmentTree(int size) {
        n = size;
        tree.assign(4 * n, 0);
        lazy.assign(4 * n, 0);
    }

    void push(int node, int start, int end) {
        if (lazy[node] != 0) {
            // 遅延値を現在のノードに適用
            tree[node] += (end - start + 1) * lazy[node];

            // 子ノードに遅延値を伝播
            if (start != end) {
                lazy[node * 2] += lazy[node];
                lazy[node * 2 + 1] += lazy[node];
            }

            // 現在のノードの遅延値をクリア
            lazy[node] = 0;
        }
    }

    void updateRange(int l, int r, long long value, int node = 1, int start = 0, int end = -1) {
        if (end == -1) end = n - 1;

        push(node, start, end);

        if (start > r || end < l) {
            // 完全に範囲外
            return;
        }

        if (start >= l && end <= r) {
            // 完全に範囲内
            lazy[node] += value;
            push(node, start, end);
            return;
        }

        // 部分的に範囲が重なる場合
        int mid = (start + end) / 2;
        updateRange(l, r, value, node * 2, start, mid);
        updateRange(l, r, value, node * 2 + 1, mid + 1, end);
        tree[node] = tree[node * 2] + tree[node * 2 + 1];
    }

    long long queryRange(int l, int r, int node = 1, int start = 0, int end = -1) {
        if (end == -1) end = n - 1;

        push(node, start, end);

        if (start > r || end < l) {
            // 完全に範囲外
            return 0;
        }

        if (start >= l && end <= r) {
            // 完全に範囲内
            return tree[node];
        }

        // 部分的に範囲が重なる場合
        int mid = (start + end) / 2;
        long long leftQuery = queryRange(l, r, node * 2, start, mid);
        long long rightQuery = queryRange(l, r, node * 2 + 1, mid + 1, end);
        return leftQuery + rightQuery;
    }

    long long lower_bound(int l, long long value, int node = 1, int start = 0, int end = -1, long long curval = 0) {
        if (end == -1) {
            end = n - 1;
            push(node, start, end);
            curval += queryRange(0, l - 1);
            if (tree[node] < value + curval) return n;
        }

        if (start == end) {
            if (tree[node] + curval < value) return start + 1;
            else return start;
        }

        int mid = (start + end) / 2;
        push(node * 2, start, mid);
        push(node * 2 + 1, mid + 1, end);
        if (tree[node * 2] + curval >= value) {
            return lower_bound(l, value, node * 2, start, mid, curval);
        } else {
            curval += tree[node * 2];
            return lower_bound(l, value, node * 2 + 1, mid + 1, end, curval);
        }
    }
};

static const long long MOD = 998244353;
static const int MAXN = 1000000;  // 必要に応じて大きく設定

// 階乗・階乗逆元の配列
static long long fact[MAXN+1], invFact[MAXN+1];

// 繰り返し二乗法 (a^b mod M)
long long modpow(long long a, long long b, long long M) {
    long long ret = 1 % M;
    a %= M;
    while (b > 0) {
        if (b & 1) ret = (ret * a) % M;
        a = (a * a) % M;
        b >>= 1;
    }
    return ret;
}

// 前処理: 階乗と逆元のテーブルを作る
void initFactorials() {
    // 階乗テーブル
    fact[0] = 1;
    for (int i = 1; i <= MAXN; i++) {
        fact[i] = fact[i-1] * i % MOD;
    }
    // 階乗逆元テーブル
    invFact[MAXN] = modpow(fact[MAXN], MOD - 2, MOD);  // フェルマーの小定理で逆元を計算
    for (int i = MAXN; i >= 1; i--) {
        invFact[i-1] = invFact[i] * i % MOD;
    }
}

// 組み合わせ数 C(n, r)
long long comb(int n, int r) {
    if (r < 0 || r > n) return 0;
    return fact[n] * invFact[r] % MOD * invFact[n - r] % MOD;
}

vector<pair<long long, long long>> rlell(vector<long long> a) {
    vector<pair<long long, long long>> res;
    if (a.empty()) return res;
    res.push_back({a[0], 1});
    long long n = a.size();
    for (int i = 1; i < n; ++i) {
        if (a[i] == a[i - 1]) {
            res.back().second++;
        } else {
            res.push_back({a[i], 1});
        }
    }
    return res;
}

vector<pair<char, long long>> rlest(string a) {
    vector<pair<char, long long>> res;
    if (a.empty()) return res;
    res.push_back({a[0], 1});
    long long n = a.size();
    for (int i = 1; i < n; ++i) {
        if (a[i] == a[i - 1]) {
            res.back().second++;
        } else {
            res.push_back({a[i], 1});
        }
    }
    return res;
}

// vector<int> cl = {-1, 0, 1, 0, -1};

// vector<ll> cl = {-1, 0, 1, 1, 1, 0, -1, -1, -1, 0};

int main()
{
    ll n;
    cin >> n;
    vector<vector<ll>> candidate;
    vector<vector<ll>> def = {
        {1, 1, 1, 1, 1, 1, 0},
        {0, 1, 1, 0, 0, 0, 0},
        {1, 1, 0, 1, 1, 0, 1},
        {1, 1, 1, 1, 0, 0, 1},
        {0, 1, 1, 0, 0, 1, 1},
        {1, 0, 1, 1, 0, 1, 1},
        {1, 0, 1, 1, 1, 1, 1},
        {1, 1, 1, 0, 0, 0, 0},
        {1, 1, 1, 1, 1, 1, 1},
        {1, 1, 1, 1, 0, 1, 1}
    };
    vector<ll> frec(10, 0);
    auto f = [&](auto && self, ll cur, ll cc) -> void {
        if (cur == 10) {
            bool flag = true;
            vector<ll> seg(7, 0);
            for (int i = 0; i < 10; ++i) {
                for (int j = 0; j < 7; ++j) {
                    seg[j] += def[i][j] * frec[i];
                }
            }
            ll use = seg[2] + seg[4];
            if (use % 2 != 0) flag = false;
            use /= 2;
            if (!ckran(use - seg[6], frec[0] + 1)) flag = false;
            seg[0] -= use - seg[6];
            seg[1] -= use - seg[6];
            seg[5] -= use - seg[6];
            seg[6] = use;
            if (!ckran(use - seg[4], frec[1] + 1)) flag = false;
            seg[1] -= use - seg[4];
            seg[2] -= use - seg[4];
            seg[5] += use - seg[4];
            seg[4] = use;
            if (!ckran(seg[0] - use, frec[6] + 1)) flag = false;
            seg[0] = use;
            if (!ckran(use - seg[5], frec[7] + 1)) flag = false;
            seg[5] = use;
            if (!ckran(seg[3] - use, frec[9] + 1)) flag = false;
            seg[3] = use;
            if (seg[1] != use || seg[2] != use) flag = false;
            if (flag) {
                for (int i = cc; i <= 19; ++i) {
                    frec[8] += i - cc;
                    candidate.push_back(frec);
                    frec[8] -= i - cc;
                }
            }
            return;
        }
        if (cur == 8) {
            self(self, cur + 1, cc);
            return;
        }
        for (int i = 0; i < 20 - cc; ++i) {
            frec[cur] = i;
            self(self, cur + 1, cc + i);
            frec[cur] = 0;
        }
    };
    f(f, 0, 0);
    auto vec = lltovec(n);
    ll vs = vec.size();
    vec = lltovec(n, 10, 19);
    ll ans = 2e18;
    ll fc = 0;
    vector<ll> pl(19, 1);
    for (int i = 1; i < 19; ++i) {
        pl[i] = pl[i - 1] * 10;
    }
    auto f2 = [&](auto && self, vector<ll> frec, ll cur, ll cn) -> void {
        if (fc < vs) return;
        if (cur == -1) {
            chmin(ans, cn);
        }
        if (cn > n || cur > fc) {
            for (int i = 0; i < 10; ++i) {
                if (frec[i] > 0) {
                    frec[i]--;
                    cn += pl[cur] * i;
                    self(self, frec, cur - 1, cn);
                    break;
                }
            }
        } else {
            if (frec[vec[cur]] > 0 && !(cn == 0 && vec[cur] == 0)) {
                if (cur == 18) cn += pl[18] * vec[cur];
                else cn += pl[cur] * vec[cur];
                frec[vec[cur]]--;
                self(self, frec, cur - 1, cn);
                if (cur == 18) cn -= pl[18] * vec[cur];
                else cn -= pl[cur] * vec[cur];
                frec[vec[cur]]++;
            }
            for (int i = vec[cur] + 1; i < 10; ++i) {
                if (frec[i] > 0) {
                    if (cur == 18) cn += pl[18] * i;
                    else cn += pl[cur] * i;
                    frec[i]--;
                    self(self, frec, cur - 1, cn);
                    break;
                }
            }
        }
    };
    // for (int i = 100; i < 110; ++i) {
    //     for (int j = 0; j < 10; ++j) {
    //         for (int k = 0; k < candidate[i][j]; ++k) {
    //             cout << j;
    //         }
    //     }
    //     cout << endl;
    // }
    for (int i = 0; i < (int)candidate.size(); ++i) {
        for (int j = 0; j < 10; ++j) fc += candidate[i][j];
        // if (candidate[i][0] == 6 && candidate[i][8] == 1 && candidate[i][9] == 6) {
        //     for (int j = 0; j < 10; ++j) {
        //         for (int k = 0; k < candidate[i][j]; ++k) {
        //             cout << j;
        //         }
        //     }
        //     cout << endl;
        // }
        f2(f2, candidate[i], fc - 1, 0);
        fc = 0;
    }
    cout << ans << endl;
}
0