結果
| 問題 | No.3399 One Two Three Two Three |
| コンテスト | |
| ユーザー |
hotman78
|
| 提出日時 | 2025-12-06 12:21:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 42,864 bytes |
| 記録 | |
| コンパイル時間 | 6,907 ms |
| コンパイル使用メモリ | 318,792 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-12-06 12:21:38 |
| 合計ジャッジ時間 | 12,988 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 10 TLE * 1 -- * 29 |
ソースコード
#line 2 "cpplib/util/template.hpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
// #pragma GCC target("avx2")
#include <bits/stdc++.h>
using namespace std;
#line 1 "cpplib/util/ioutil.hpp"
// template <class Head,class... Args>
// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){
// out>>head;
// return output(head,args...);
// }
// template <class Head>
// std::ostream& output(std::ostream& out,const Head& head){
// out>>head;
// return out;
// }
template<typename T,typename E>
std::ostream& operator<<(std::ostream& out,std::pair<T,E>v){
out<<"("<<v.first<<","<<v.second<<")";return out;
}
// template <class... Args>
// ostream& operator<<(ostream& out,std::tuple<Args...>v){
// std::apply(output,v);
// return out;
// }
#line 11 "cpplib/util/template.hpp"
struct __INIT__ {
__INIT__() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __INIT__;
typedef long long lint;
constexpr long long INF = 1LL << 60;
constexpr int IINF = 1 << 30;
constexpr double EPS = 1e-10;
#ifndef REACTIVE
#define endl '\n';
#endif
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template <typename T> using V = vector<T>;
template <typename T> using VV = V<V<T>>;
#define output(t) \
{ \
bool f = 0; \
for (auto val : (t)) { \
cout << (f ? " " : "") << val; \
f = 1; \
} \
cout << endl; \
}
#define output2(t) \
{ \
for (auto i : t) output(i); \
}
#define debug(t) \
{ \
bool f = 0; \
for (auto i : t) { \
cerr << (f ? " " : "") << i; \
f = 1; \
} \
cerr << endl; \
}
#define debug2(t) \
{ \
for (auto i : t) debug(i); \
}
#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)
#define _overload4(_1, _2, _3, _4, name, ...) name
#define __rep(i, a) repi(i, 0, a, 1)
#define _rep(i, a, b) repi(i, a, b, 1)
#define repi(i, a, b, c) \
for (long long i = (long long)(a); i < (long long)(b); i += c)
#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)
#define _overload3_rev(_1, _2, _3, name, ...) name
#define _rep_rev(i, a) repi_rev(i, 0, a)
#define repi_rev(i, a, b) \
for (long long i = (long long)(b) - 1; i >= (long long)(a); --i)
#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)
#define all(n) begin(n), end(n)
template <typename T, typename E> bool chmin(T& s, const E& t) {
bool res = s > t;
s = min<T>(s, t);
return res;
}
template <typename T, typename E> bool chmax(T& s, const E& t) {
bool res = s < t;
s = max<T>(s, t);
return res;
}
const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};
const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};
#define SUM(v) accumulate(all(v), 0LL)
#if __cplusplus >= 201703L
template <typename T, typename... Args>
auto make_vector(T x, int arg, Args... args) {
if constexpr (sizeof...(args) == 0)
return vector<T>(arg, x);
else
return vector(arg, make_vector<T>(x, args...));
}
#endif
#define bit(n, a) ((n >> a) & 1)
#define extrep(v, ...) for (auto v : make_mat_impl({__VA_ARGS__}))
vector<vector<long long>> make_mat_impl(vector<long long> v) {
if (v.empty()) return vector<vector<long long>>(1, vector<long long>());
long long n = v.back();
v.pop_back();
vector<vector<long long>> ret;
vector<vector<long long>> tmp = make_mat_impl(v);
for (auto e : tmp)
for (long long i = 0; i < n; ++i) {
ret.push_back(e);
ret.back().push_back(i);
}
return ret;
}
using graph = vector<vector<int>>;
template <typename T> using graph_w = vector<vector<pair<int, T>>>;
#if __cplusplus >= 201703L
constexpr inline long long powll(long long a, long long b) {
long long res = 1;
while (b--) res *= a;
return res;
}
#endif
template <typename T, typename E>
pair<T, E>& operator+=(pair<T, E>& s, const pair<T, E>& t) {
s.first += t.first;
s.second += t.second;
return s;
}
template <typename T, typename E>
pair<T, E>& operator-=(pair<T, E>& s, const pair<T, E>& t) {
s.first -= t.first;
s.second -= t.second;
return s;
}
template <typename T, typename E>
pair<T, E> operator+(const pair<T, E>& s, const pair<T, E>& t) {
auto res = s;
return res += t;
}
template <typename T, typename E>
pair<T, E> operator-(const pair<T, E>& s, const pair<T, E>& t) {
auto res = s;
return res -= t;
}
#define BEGIN_STACK_EXTEND(size) \
void* stack_extend_memory_ = malloc(size); \
void* stack_extend_origin_memory_; \
char* stack_extend_dummy_memory_ = (char*)alloca( \
(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \
*stack_extend_dummy_memory_ = 0; \
asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \
: "=b"(stack_extend_origin_memory_) \
: "a"((char*)stack_extend_memory_ + (size) - 1024));
#define END_STACK_EXTEND \
asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \
free(stack_extend_memory_);
int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; }
#line 2 "cpplib/math/ACL_modint998244353.hpp"
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint=atcoder::modint998244353;
#line 4 "cpplib/math/ACL_modint_base.hpp"
std::ostream& operator<<(std::ostream& lhs, const mint& rhs) noexcept {
lhs << rhs.val();
return lhs;
}
std::istream& operator>>(std::istream& lhs,mint& rhs) noexcept {
long long x;
lhs >> x;
rhs=x;
return lhs;
}
int MOD_NOW=-1;
int FACT_TABLE_SIZE=0;
std::vector<mint>fact_table,fact_inv_table;
void update(int x){
if(MOD_NOW!=mint::mod()||FACT_TABLE_SIZE==0){
fact_table.assign(1,1);
fact_inv_table.assign(1,1);
FACT_TABLE_SIZE=1;
MOD_NOW=mint::mod();
}
while(FACT_TABLE_SIZE<=x){
fact_table.resize(FACT_TABLE_SIZE*2);
fact_inv_table.resize(FACT_TABLE_SIZE*2);
for(int i=FACT_TABLE_SIZE;i<FACT_TABLE_SIZE*2;++i){
fact_table[i]=fact_table[i-1]*i;
}
fact_inv_table[FACT_TABLE_SIZE*2-1]=fact_table[FACT_TABLE_SIZE*2-1].inv();
for(int i=FACT_TABLE_SIZE*2-2;i>=FACT_TABLE_SIZE;--i){
fact_inv_table[i]=fact_inv_table[i+1]*(i+1);
}
FACT_TABLE_SIZE*=2;
}
}
inline mint fact(int x){
assert(x>=0);
update(x);
return fact_table[x];
}
inline mint fact_inv(int x){
assert(x>=0);
update(x);
return fact_inv_table[x];
}
inline mint comb(int x,int y){
if(x<0||x<y||y<0)return 0;
return fact(x)*fact_inv(y)*fact_inv(x-y);
}
inline mint perm(int x,int y){
return fact(x)*fact_inv(x-y);
}
// x個のグループにy個のものを分ける場合の数
inline mint multi_comb(int x,int y){
if(y==0&&x>=0)return 1;
if(y<0||x<=0)return 0;
return comb(x+y-1,y);
}
#line 2 "cpplib/math/ACL_convolution.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if __cplusplus >= 202002L
#include <bit>
#endif
namespace atcoder {
namespace internal {
#if __cplusplus >= 202002L
using std::bit_ceil;
#else
unsigned int bit_ceil(unsigned int n) {
unsigned int x = 1;
while (x < (unsigned int)(n)) x *= 2;
return x;
}
#endif
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(std::move(a), std::move(b));
return internal::convolution_fft(std::move(a), std::move(b));
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
static constexpr int MAX_AB_BIT = 24;
static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
assert(n + m - 1 <= (1 << MAX_AB_BIT));
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#line 2 "cpplib/math/mod_pow.hpp"
/**
* @brief (x^y)%mod
*/
long long mod_pow(long long x,long long y,long long mod){
long long ret=1;
while(y>0) {
if(y&1)(ret*=x)%=mod;
(x*=x)%=mod;
y>>=1;
}
return ret;
}
#line 4 "cpplib/math/garner.hpp"
/**
*
* @brief ガーナーのアルゴリズム
*
*/
long long garner(const std::vector<long long>&a,const std::vector<long long>&mods){
const int sz=a.size();
long long coeffs[sz+1]={1,1,1,1};
long long constants[sz+1]={};
for(int i=0;i<sz;i++){
long long v=(mods[i]+a[i]-constants[i])%mods[i]*mod_pow(coeffs[i],mods[i]-2,mods[i])%mods[i];
for(int j=i+1;j<sz+1;j++) {
constants[j]=(constants[j]+coeffs[j]*v)%mods[j];
coeffs[j]=(coeffs[j]*mods[i])%mods[j];
}
}
return constants[sz];
}
#line 1 "cpplib/math/ceil_pow2.hpp"
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
#line 6 "cpplib/math/ACL_convolution.hpp"
#line 8 "cpplib/math/ACL_convolution.hpp"
template<typename Mint>
std::vector<Mint> convolution(const std::vector<Mint>& _s,const std::vector<Mint>& _t){
using T=std::vector<Mint>;
if(_s.size()==0||_t.size()==0)return T();
const size_t sz=_s.size()+_t.size()-1;
std::vector<atcoder::static_modint<1224736769>>s1(_s.size()),t1(_t.size());
std::vector<atcoder::static_modint<1045430273>>s2(_s.size()),t2(_t.size());
std::vector<atcoder::static_modint<1007681537>>s3(_s.size()),t3(_t.size());
for(size_t i=0;i<_s.size();++i){
s1[i]=_s[i].val();
s2[i]=_s[i].val();
s3[i]=_s[i].val();
}
for(size_t i=0;i<_t.size();++i){
t1[i]=_t[i].val();
t2[i]=_t[i].val();
t3[i]=_t[i].val();
}
auto v1=atcoder::convolution(s1,t1);
auto v2=atcoder::convolution(s2,t2);
auto v3=atcoder::convolution(s3,t3);
T v(sz);
for(size_t i=0;i<sz;++i){
v[i]=garner(std::vector<long long>{v1[i].val(),v2[i].val(),v3[i].val()},std::vector<long long>{1224736769,1045430273,1007681537,(long long)Mint::mod()});
}
return v;
}
#line 4 "main.cpp"
#line 2 "cpplib/math/poly.hpp"
using poly=vector<mint>;
int size(const poly&x){return x.size();}
poly shrink(poly x){
while(size(x)>=1&&x.back().val()==0)x.pop_back();
return x;
}
poly pre(const poly&x,int n){
auto res=x;
res.resize(n);
return res;
}
poly operator+(const poly& x,const poly& y){
poly res(max(x.size(),y.size()));
rep(i,0,x.size())res[i]+=x[i];
rep(i,0,y.size())res[i]+=y[i];
return res;
}
poly& operator*=(poly& x,const mint& y){
rep(i,0,x.size())x[i]*=y;
return x;
}
poly operator*(poly x,const mint& y){
return x*=y;
}
poly operator-(const poly& x){
poly res(x.size());
rep(i,0,x.size())res[i]=-x[i];
return res;
}
poly operator-(const poly&x,const poly&y){
return x+(-y);
}
poly operator*(const poly&x,const poly&y){
return atcoder::convolution(x,y);
}
// poly operator*(const poly&x,const poly&y){
// return convolution(x,y);
// }
poly& operator+=(poly& x,const poly& y){
return x=(x+y);
}
poly& operator-=(poly& x,const poly& y){
return x=(x-y);
}
poly& operator*=(poly& x,const poly& y){
return x=(x*y);
}
istream& operator>>(istream& in,poly& y){
int n=size(y);
rep(i,0,n)in>>y[i];
return in;
}
ostream& operator<<(ostream& out,const poly& y){
int n=size(y);
rep(i,0,n){
if(i)out<<' ';
out<<y[i].val();
}
return out;
}
poly diff(const poly& x){
int n=size(x);
poly res(n-1);
rep(i,0,n-1)res[i]=x[i+1]*(i+1);
return res;
}
poly integrate(const poly& x){
int n=size(x);
poly res(n+1);
rep(i,1,n+1)res[i]=x[i-1]/i;
return res;
}
poly inv(const poly& x){
int n=size(x);
if(n==1)return poly{x[0].inv()};
auto c=inv(pre(x,(n+1)/2));
return pre(c*(poly{2}-c*x),n);
}
poly log(const poly& x){
int n=size(x);
assert(x[0].val()==1);
return pre(integrate(diff(x)*inv(x)),n);
}
poly exp(const poly& x){
assert(x[0].val()==0);
int n=size(x);
if(n==1)return poly{1};
auto c=exp(pre(x,(n+1)/2));
return pre(c*(poly{1}-log(pre(c,n))+x),n);
}
pair<poly,poly> divmod(const poly&a,const poly& b){
assert(!b.empty());
if(b.back().val()==0)return divmod(a,shrink(b));
if(a.empty())return make_pair(poly{},poly{});
if(a.back().val()==0)return divmod(shrink(a),b);
int n=max(0,size(a)-size(b)+1);
if(n==0)return make_pair(poly{},a);
auto c=a;
auto d=b;
reverse(c.begin(),c.end());
reverse(d.begin(),d.end());
d.resize(n);
c*=inv(d);
c.resize(n);
reverse(c.begin(),c.end());
return make_pair(c,pre(a-c*b,(int)b.size()-1));
}
poly multipoint_evalution(const poly&a,const poly&b){
int n=b.size();
vector<poly>v(n*2);
rep(i,0,n){
v[i+n]=poly{-mint(b[i]),mint(1)};
}
for(int i=n-1;i>=1;--i){
v[i]=v[i*2]*v[i*2+1];
}
poly ans(n);
v[0]=a;
rep(i,1,n*2){
v[i]=divmod(v[i/2],v[i]).second;
if(i>=n)ans[i-n]=v[i][0];
}
return ans;
}
vector<mint> composition(vector<mint>f,vector<mint>g){
int n=f.size(),m=g.size();
assert(n==m);
vector<mint>res(n);
int b=ceil(sqrt(n));
vector<vector<mint>>g_pow(b+1);
g_pow[0]=vector<mint>{1};
for(int i=0;i<b;++i){
g_pow[i+1]=g_pow[i]*g;
g_pow[i+1].resize(n);
}
vector<mint>g_pow2=vector<mint>{1};
for(int i=0;i<n;i+=b){
vector<mint> tmp;
for(int j=i;j<std::min(i+b,n);++j){
tmp+=g_pow[j-i]*f[j];
}
res+=tmp*g_pow2;
res.resize(n);
g_pow2*=g_pow[b];
g_pow2.resize(n);
}
return res;
}
vector<mint> shift(vector<mint>f,int c){
const int n=f.size();
vector<mint> g(n,0);
for(int i=0;i<n;++i)f[i]*=fact(i);
for(int i=0;i<n;++i)g[i]=mint(c).pow(i)*fact_inv(i);
reverse(begin(g),end(g));
f*=g;
f =vector<mint>{f.begin()+n-1,f.end()};
for(int i=0;i<n;++i)f[i]*=fact_inv(i);
return f;
}
poly even_part(const poly& a){
poly res;
res.reserve((a.size()+1)/2);
for(int i=0;i<a.size();i+=2)res.emplace_back(a[i]);
return shrink(res);
}
poly odd_part(const poly& a){
poly res;
res.reserve(a.size()/2);
for(int i=1;i<a.size();i+=2)res.emplace_back(a[i]);
return shrink(res);
}
// bostan-mori: P/Q の級数展開における x^k の係数を返す (Q[0] ≠ 0 を仮定)
mint bostan_mori(poly p, poly q, long long k){
p=shrink(p); q=shrink(q);
assert(!q.empty() && q[0].val()!=0);
while(k){
poly q_neg(q.size());
rep(i,0,q.size()) q_neg[i]=(i&1)?-q[i]:q[i];
poly r=p*q_neg;
poly s=q*q_neg;
if(k&1) p=odd_part(r);
else p=even_part(r);
q=even_part(s);
k>>=1;
}
return p.empty()?mint(0):p[0]/q[0];
}
#line 6 "main.cpp"
struct state{
// p/q;
poly p,q;
state operator+=(const state& y){
if(p.size()==0){
return (*this)=y;
}
return (*this)=state{p*y.q+q*y.p, q*y.q};
}
state operator*(state& y){
return state{p*y.p, q*y.q};
}
vector<poly>divide(const poly& x,int k){
vector<poly> res(k);
for(int i=0;i<x.size();++i){
res[i%k].emplace_back(x[i]);
for(int j=1;j<k;++j){
res[(i+j)%k].emplace_back(0);
}
}
return res;
}
poly select_poly(const poly& p,int k,int n){
poly res;
for(int i=0;i<p.size();++i){
if(i%n==k){
res.emplace_back(p[i]);
}
}
return res;
}
state select2(int k){
auto divq = divide(q,2);
auto q0=divq[0],q1=divq[1];
auto mul = q0-q1;
p*=mul;
q*=mul;
return state{select_poly(p, k, 2),select_poly(q, 0, 2)};
}
state select3(int k){
auto divq=divide(q,3);
auto q0=divq[0],q1=divq[1],q2=divq[2];
auto mul = q0*q0+q1*q1+q2*q2-q0*q1-q1*q2-q2*q0;
p*=mul;
q*=mul;
return state{select_poly(p, k, 3),select_poly(q, 0, 3)};
}
};
void solve(lint n){
lint k=0;
vector<map<lint,state>>v(1);
mint ans=0;
// output2(state().divide(poly{1,2,3,4},3));
v[0][n]=state{poly{1},poly{1}};
while(v.back().size()){
v.emplace_back();
for(auto [now,p]:v[k]){
if(now==0)continue;
p=state{poly{1},poly{1,-1,-1,-1}}*p;
{
if(p.p.size()>0&&p.q.size()>0){
ans+=bostan_mori(p.p,p.q,now-1);
}
}
v.back()[now/2]+=p.select2(now%2);
v.back()[now/3]+=p.select3(now%3);
}
++k;
}
cout<<ans<<endl;
}
int main(){
lint n;
cin>>n;
solve(n);
}
hotman78