結果

問題 No.1600 Many Shortest Path Problems
コンテスト
ユーザー limbo
提出日時 2025-12-12 21:35:30
言語 C++17
(gcc 13.3.0 + boost 1.89.0)
結果
AC  
実行時間 379 ms / 4,000 ms
コード長 7,963 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 1,222 ms
コンパイル使用メモリ 86,996 KB
実行使用メモリ 46,308 KB
最終ジャッジ日時 2025-12-12 21:35:45
合計ジャッジ時間 14,098 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

/**
 * Problem: Everything Everywhere All at Once (Polygon Version)
 * Language: C++20
 * Input Format:
 * N M
 * A1 B1
 * ...
 * AM BM
 * Q
 * x1 y1 z1
 * ...
 * xQ yQ zQ
 * * Weight Logic: The i-th edge (1-based index) has weight 2^i.
 */

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

using namespace std;

// =========================================================
// Constants & Globals
// =========================================================
const int MOD = 1e9 + 7;
const int MAXN = 200005;
const int LOGN = 20;

struct Edge {
    int u, v, id;
    long long w_mod;   // 2^id % MOD
    bool in_mst;
};

// Global Arrays
vector<Edge> edges;
vector<pair<int, int>> tree_adj[MAXN]; // {neighbor, edge_index}
long long pow2[MAXN];                  // Precomputed powers of 2

// LCA & Tree Traversal
int up[MAXN][LOGN];
int depth[MAXN];
int tin[MAXN], tout[MAXN], timer;
long long dist_from_root[MAXN];        // Path cost from root % MOD
int edge_index_up[MAXN];               // Index of edge connecting u to parent

// Replacement Logic
int best_replacement[MAXN];            // Stores the ID of the replacement edge

// =========================================================
// Data Structures
// =========================================================
struct DSU {
    vector<int> parent;
    DSU(int n) {
        parent.resize(n + 1);
        iota(parent.begin(), parent.end(), 0);
    }
    int find(int i) {
        if (parent[i] == i) return i;
        return parent[i] = find(parent[i]);
    }
    void unite(int i, int j) {
        int root_i = find(i);
        int root_j = find(j);
        if (root_i != root_j) {
            parent[root_i] = root_j;
        }
    }
};

// =========================================================
// Tree Functions (LCA, DFS)
// =========================================================
void dfs(int u, int p, int edge_idx, long long current_dist) {
    tin[u] = ++timer;
    depth[u] = depth[p] + 1;
    up[u][0] = p;
    dist_from_root[u] = current_dist;
    edge_index_up[u] = edge_idx;

    for (int i = 1; i < LOGN; i++) {
        up[u][i] = up[up[u][i - 1]][i - 1];
    }

    for (auto& e : tree_adj[u]) {
        int v = e.first;
        int idx = e.second;
        if (v != p) {
            // Calculate distance down the tree
            dfs(v, u, idx, (current_dist + edges[idx].w_mod) % MOD);
        }
    }
    tout[u] = ++timer;
}

bool is_ancestor(int u, int v) {
    return tin[u] <= tin[v] && tout[u] >= tout[v];
}

int get_lca(int u, int v) {
    if (is_ancestor(u, v)) return u;
    if (is_ancestor(v, u)) return v;
    for (int i = LOGN - 1; i >= 0; i--) {
        if (!is_ancestor(up[u][i], v)) {
            u = up[u][i];
        }
    }
    return up[u][0];
}

long long get_path_cost(int u, int v) {
    int lca = get_lca(u, v);
    long long res = (dist_from_root[u] + dist_from_root[v]) % MOD;
    long long sub = (2 * dist_from_root[lca]) % MOD;
    return (res - sub + MOD) % MOD;
}

// =========================================================
// Main Solver
// =========================================================
int main() {
    // Fast I/O
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);

    int N, M;
    if (!(cin >> N >> M)) return 0;

    // Precompute powers of 2 for weights
    pow2[0] = 1;
    for (int i = 1; i <= M; i++) pow2[i] = (pow2[i - 1] * 2) % MOD;

    edges.resize(M + 1);
    
    // 1. Read Edges & Build MST implicitly
    // Since edge i has weight 2^i, edges are ALREADY sorted by weight.
    // We can run Kruskal's directly as we read input or in a simple 1..M loop.
    
    DSU dsu_mst(N);
    
    for (int i = 1; i <= M; i++) {
        edges[i].id = i;
        cin >> edges[i].u >> edges[i].v;
        edges[i].w_mod = pow2[i]; // Weight is 2^i
        edges[i].in_mst = false;

        // Kruskal's Step: Attempt to add edge i
        if (dsu_mst.find(edges[i].u) != dsu_mst.find(edges[i].v)) {
            dsu_mst.unite(edges[i].u, edges[i].v);
            edges[i].in_mst = true;
            tree_adj[edges[i].u].push_back({edges[i].v, i});
            tree_adj[edges[i].v].push_back({edges[i].u, i});
        }
    }

    // 2. Build Tree Structure (Root at 1)
    dfs(1, 1, -1, 0);

    // 3. Precompute Replacements
    // Iterate non-MST edges from smallest weight (smallest index) to largest.
    // Use DSU on Tree to cover paths.
    
    fill(best_replacement, best_replacement + M + 1, -1);
    DSU dsu_cover(N); 

    for (int i = 1; i <= M; i++) {
        if (!edges[i].in_mst) {
            int u = edges[i].u;
            int v = edges[i].v;
            int lca = get_lca(u, v);

            // Lambda to crawl up the tree and mark edges
            auto cover_path = [&](int curr) {
                curr = dsu_cover.find(curr);
                while (depth[curr] > depth[lca]) {
                    int edge_up = edge_index_up[curr];
                    if (best_replacement[edge_up] == -1) {
                        best_replacement[edge_up] = i; // Store index of replacement edge
                    }
                    dsu_cover.unite(curr, up[curr][0]); // Compress path
                    curr = dsu_cover.find(curr);
                }
            };

            cover_path(u);
            cover_path(v);
        }
    }

    // 4. Process Queries
    int Q;
    cin >> Q;
    while (Q--) {
        int x, y, z;
        cin >> x >> y >> z;

        // Base Distance on the full MST
        long long base_dist = get_path_cost(x, y);

        // Case 1: The removed edge z is NOT in the MST
        // The shortest path (MST path) is unaffected.
        if (!edges[z].in_mst) {
            cout << base_dist << "\n";
            continue;
        }

        // Case 2: The removed edge z IS in the MST
        // We need to check if z lies on the simple path between x and y.
        int u = edges[z].u;
        int v = edges[z].v;
        if (depth[u] > depth[v]) swap(u, v); 
        // v is now the child; the edge is effectively (parent[v] -> v)

        // The edge z is on the x-y path IFF exactly one of x, y is in v's subtree.
        bool x_in_sub = is_ancestor(v, x);
        bool y_in_sub = is_ancestor(v, y);

        if (x_in_sub == y_in_sub) {
            // Edge z is in MST but NOT on the path x-y. Path is safe.
            cout << base_dist << "\n";
        } else {
            // Edge z is critical for this path. Need replacement.
            int rep_idx = best_replacement[z];

            if (rep_idx == -1) {
                cout << "-1\n"; // Graph disconnected
            } else {
                // We have a replacement edge (rx, ry)
                int rx = edges[rep_idx].u;
                int ry = edges[rep_idx].v;
                long long w_rep = edges[rep_idx].w_mod;
                long long w_removed = edges[z].w_mod;

                // To correctly compute the new path length without subtraction issues:
                // New Path = Path(x -> rx) + Weight(rx, ry) + Path(ry -> y)
                // BUT we need to know which end of the replacement connects to x's component.
                
                // x is in v's subtree if x_in_sub is true.
                // rx is in v's subtree if is_ancestor(v, rx) is true.
                
                // If x and rx are on the same side of the cut, we connect x->rx and y->ry.
                // Otherwise cross-connect x->ry and y->rx.
                
                long long segment1, segment2;
                if (is_ancestor(v, rx) == x_in_sub) {
                    segment1 = get_path_cost(x, rx);
                    segment2 = get_path_cost(y, ry);
                } else {
                    segment1 = get_path_cost(x, ry);
                    segment2 = get_path_cost(y, rx);
                }

                long long ans = (segment1 + segment2 + w_rep) % MOD;
                cout << ans << "\n";
            }
        }
    }

    return 0;
}
0