結果
| 問題 | No.137 貯金箱の焦り |
| コンテスト | |
| ユーザー |
applejam
|
| 提出日時 | 2025-12-14 15:55:24 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 7,852 bytes |
| 記録 | |
| コンパイル時間 | 5,616 ms |
| コンパイル使用メモリ | 335,640 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-12-14 15:57:01 |
| 合計ジャッジ時間 | 96,857 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 TLE * 1 |
| other | AC * 10 WA * 2 TLE * 11 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
using ll = long long;
using mint = modint;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vmi = vector<mint>;
using vvmi = vector<vmi>;
using vvvmi = vector<vvmi>;
#define all(a) (a).begin(), (a).end()
#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2*m));
F r(res);
f.resize(2*m), internal::butterfly(f);
r.resize(2*m), internal::butterfly(r);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// // fast: FMT-friendly modulus only
/*F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}*/
// // naive
F &operator*=(const F &g) {
int n = (*this).size(), m = g.size();
drep(i, n) {
(*this)[i] *= g[0];
rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
}
return *this;
}
F &operator/=(const F &g) {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
rep(i, n) {
rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
(*this)[i] *= ig0;
}
return *this;
}
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i];
else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i];
else drep(i, n-d) (*this)[i+d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i];
else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i];
else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F diff() const {
int n = (int)this->size();
if (n == 0) return F{};
F res(n);
for (int i = 1; i < n; i++) res[i-1] = (*this)[i] * T(i);
res[n-1] = T(0);
return res;
}
F integral() const {
int n = (int)this->size();
F res(n);
res[0] = T(0);
for (int i = 0; i + 1 < n; i++) res[i+1] = (*this)[i] / T(i+1);
return res;
}
F log() const {
int n = (int)this->size();
assert(n > 0 && (*this)[0] == T(1));
F f = *this;
F res = (f.diff() / f).integral();
res.resize(n);
return res;
}
F exp() const {
int n = (int)this->size();
assert(n > 0 && (*this)[0] == T(0));
F f = *this;
F g(n); // g = 1
g[0] = T(1);
int m = 1;
while (m < n) {
int k = min(n, 2*m);
// g_k = g mod x^k
F gk = g;
gk.resize(k);
// log(gk) mod x^k
F lg = gk.log(); // requires gk[0]==1 OK
// h = f - log(g) (mod x^k)
F h(k);
for (int i = 0; i < k; i++) {
T fi = (i < (int)f.size() ? f[i] : T(0));
T lgi = (i < (int)lg.size() ? lg[i] : T(0));
h[i] = fi - lgi;
}
h[0] += T(1); // 1 + f - log(g)
// g <- g * h (mod x^k)
gk *= h; // operator*= does convolution and resizes to k (since gk.size()==k)
gk.resize(k);
// write back
for (int i = 0; i < k; i++) g[i] = gk[i];
m <<= 1;
}
g.resize(n);
return g;
}
F neg_x(const F& Q){
F R = Q;
for(int i=1;i<(int)R.size();i+=2) R[i] = -R[i];
return R;
}
F even_part(const F& A){
int n = (int)A.size();
F E((n+1)/2);
for(int i=0;i<n;i+=2) E[i/2]=A[i];
return E;
}
F odd_part(const F& A){
int n = (int)A.size();
F O(n/2);
for(int i=1;i<n;i+=2) O[i/2]=A[i];
return O;
}
T bostan_mori(F P, F Q, long long m){
// normalize if you want: ensure Q[0]=1 by dividing both by Q[0]
assert(Q.size()>0 && Q[0]!=T(0));
while(m>0){
int d = (int)Q.size()-1;
int need = 2*d + 1; // enough degrees
P.resize(need);
Q.resize(need);
F Qm = neg_x(Q);
F A = P; A *= Qm; // A = P*Q(-x) mod x^need
F B = Q; B *= Qm; // B = Q*Q(-x) mod x^need
if((m&1)==0){
P = even_part(A);
}else{
P = odd_part(A);
}
Q = even_part(B);
m >>= 1;
}
return P[0] / Q[0];
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
mint::set_mod(1234567891);
int n; ll m; cin >> n >> m;
fps f = {1}; f.resize(3000);
rep(i, n){
int a; cin >> a;
f.multiply(a, -1);
}
fps g = {1};
cout << g.bostan_mori(g, f, m).val() << endl;
return 0;
}
applejam