結果
| 問題 | No.3409 How Many Gift Boxes? |
| コンテスト | |
| ユーザー |
norioc
|
| 提出日時 | 2025-12-16 03:03:15 |
| 言語 | PyPy3 (7.3.17) |
| 結果 |
AC
|
| 実行時間 | 678 ms / 2,000 ms |
| コード長 | 7,276 bytes |
| 記録 | |
| コンパイル時間 | 237 ms |
| コンパイル使用メモリ | 82,164 KB |
| 実行使用メモリ | 118,952 KB |
| 最終ジャッジ日時 | 2025-12-17 21:19:14 |
| 合計ジャッジ時間 | 19,443 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 38 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
n = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
if any(a[i] >= a[i + 1] for i in range(n - 1)):
a, b = [], a
for x in b:
if not a or a[-1] != x:
a.append(x)
n = self.size = len(a)
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket: n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _position(self, x: T) -> tuple[list[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, b, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b + 1] = [a[:mid], a[mid:]]
return True
def _pop(self, a: list[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> T | None:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> T | None:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> T | None:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> T | None:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
from collections import deque
MOD = 10**9 + 7
H, W = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
if H < W:
H, W = W, H
A, B = B, A
assert H >= W
def dump():
print()
print(f'{A=}')
print(f'{B=}')
for xs in g:
s = ''
for x in xs:
s += f'{x:2} '
print(s)
ss_rows = SortedSet()
ss_cols = SortedSet()
hs = deque(sorted([(h, i) for i, h in enumerate(A)], reverse=True))
ws = deque(sorted([(w, i) for i, w in enumerate(B)], reverse=True))
# g = [[0] * W for _ in range(H)]
rset = set()
cset = set()
mi = 0
while hs or ws:
if hs and ws:
h, r = hs[0]
w, c = ws[0]
if h == w:
# g[r][c] = h
mi += h
mi %= MOD
# if r not in rset:
# ss_rows.add((h, r))
# rset.add(r)
# if c not in cset:
# ss_cols.add((h, c))
# cset.add(c)
hs.popleft()
ws.popleft()
elif h > w:
# res = ss_cols.ge((h, 0))
# assert res is not None
# g[r][res[1]] = h
mi += h
mi %= MOD
# if r not in rset:
# ss_rows.add((h, r))
# rset.add(r)
hs.popleft()
else:
# res = ss_rows.ge((w, 0))
# assert res is not None
# g[res[1]][c] = w
mi += w
mi %= MOD
# if c not in cset:
# ss_cols.add((w, c))
# cset.add(c)
ws.popleft()
elif hs:
h, r = hs.popleft()
# res = ss_cols.ge((h, 0))
# assert res is not None
# g[r][res[1]] = h
mi += h
mi %= MOD
elif ws:
w, c = ws.popleft()
# res = ss_rows.ge((w, 0))
# assert res is not None
# g[res[1]][c] = w
mi += w
mi %= MOD
from bisect import bisect_left
ma = 0
ws = sorted(B)
acc = [0] * len(ws)
acc[0] = ws[0] % MOD
for i in range(1, len(ws)):
acc[i] += acc[i-1] + ws[i]
acc[i] %= MOD
for h in A:
p = bisect_right(ws, h)
if p == len(ws):
ma += acc[p-1]
ma %= MOD
elif p == 0:
ma += len(ws) * h % MOD
ma %= MOD
else:
ma += acc[p-1]
ma %= MOD
ma += (len(ws) - p) * h % MOD
ma %= MOD
print(mi)
print(ma)
norioc