結果

問題 No.3415 Dial Lock
コンテスト
ユーザー hos.lyric
提出日時 2025-12-22 00:33:19
言語 C++14
(gcc 13.3.0 + boost 1.89.0)
結果
AC  
実行時間 3,484 ms / 10,000 ms
コード長 12,563 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 1,696 ms
コンパイル使用メモリ 132,796 KB
実行使用メモリ 24,620 KB
最終ジャッジ日時 2025-12-22 00:34:21
合計ジャッジ時間 53,214 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 18
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:327:38: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  327 |     for (int n = 0; n < N; ++n) scanf("%d", &A[n]);
      |                                 ~~~~~^~~~~~~~~~~~~
main.cpp:329:66: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  329 |     for (int k = 0; k < K; ++k) for (int n = 0; n < N; ++n) scanf("%d", &R[k][n]);
      |                                                             ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #
raw source code

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <chrono>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// M: prime, G: primitive root, 2^K | M - 1
template <unsigned M_, unsigned G_, int K_> struct Fft {
  static_assert(2U <= M_, "Fft: 2 <= M must hold.");
  static_assert(M_ < 1U << 30, "Fft: M < 2^30 must hold.");
  static_assert(1 <= K_, "Fft: 1 <= K must hold.");
  static_assert(K_ < 30, "Fft: K < 30 must hold.");
  static_assert(!((M_ - 1U) & ((1U << K_) - 1U)), "Fft: 2^K | M - 1 must hold.");
  static constexpr unsigned M = M_;
  static constexpr unsigned M2 = 2U * M_;
  static constexpr unsigned G = G_;
  static constexpr int K = K_;
  ModInt<M> FFT_ROOTS[K + 1], INV_FFT_ROOTS[K + 1];
  ModInt<M> FFT_RATIOS[K], INV_FFT_RATIOS[K];
  Fft() {
    const ModInt<M> g(G);
    for (int k = 0; k <= K; ++k) {
      FFT_ROOTS[k] = g.pow((M - 1U) >> k);
      INV_FFT_ROOTS[k] = FFT_ROOTS[k].inv();
    }
    for (int k = 0; k <= K - 2; ++k) {
      FFT_RATIOS[k] = -g.pow(3U * ((M - 1U) >> (k + 2)));
      INV_FFT_RATIOS[k] = FFT_RATIOS[k].inv();
    }
    assert(FFT_ROOTS[1] == M - 1U);
  }
  // as[rev(i)] <- \sum_j \zeta^(ij) as[j]
  void fft(ModInt<M> *as, int n) const {
    assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
    int m = n;
    if (m >>= 1) {
      for (int i = 0; i < m; ++i) {
        const unsigned x = as[i + m].x;  // < M
        as[i + m].x = as[i].x + M - x;  // < 2 M
        as[i].x += x;  // < 2 M
      }
    }
    if (m >>= 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < M
          as[i + m].x = as[i].x + M - x;  // < 3 M
          as[i].x += x;  // < 3 M
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    for (; m; ) {
      if (m >>= 1) {
        ModInt<M> prod = 1U;
        for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
          for (int i = i0; i < i0 + m; ++i) {
            const unsigned x = (prod * as[i + m]).x;  // < M
            as[i + m].x = as[i].x + M - x;  // < 4 M
            as[i].x += x;  // < 4 M
          }
          prod *= FFT_RATIOS[__builtin_ctz(++h)];
        }
      }
      if (m >>= 1) {
        ModInt<M> prod = 1U;
        for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
          for (int i = i0; i < i0 + m; ++i) {
            const unsigned x = (prod * as[i + m]).x;  // < M
            as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
            as[i + m].x = as[i].x + M - x;  // < 3 M
            as[i].x += x;  // < 3 M
          }
          prod *= FFT_RATIOS[__builtin_ctz(++h)];
        }
      }
    }
    for (int i = 0; i < n; ++i) {
      as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
      as[i].x = (as[i].x >= M) ? (as[i].x - M) : as[i].x;  // < M
    }
  }
  // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
  void invFft(ModInt<M> *as, int n) const {
    assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);
    int m = 1;
    if (m < n >> 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned long long y = as[i].x + M - as[i + m].x;  // < 2 M
          as[i].x += as[i + m].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
      }
      m <<= 1;
    }
    for (; m < n >> 1; m <<= 1) {
      ModInt<M> prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + (m >> 1); ++i) {
          const unsigned long long y = as[i].x + M2 - as[i + m].x;  // < 4 M
          as[i].x += as[i + m].x;  // < 4 M
          as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
          const unsigned long long y = as[i].x + M - as[i + m].x;  // < 2 M
          as[i].x += as[i + m].x;  // < 2 M
          as[i + m].x = (prod.x * y) % M;  // < M
        }
        prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m < n) {
      for (int i = 0; i < m; ++i) {
        const unsigned y = as[i].x + M2 - as[i + m].x;  // < 4 M
        as[i].x += as[i + m].x;  // < 4 M
        as[i + m].x = y;  // < 4 M
      }
    }
    const ModInt<M> invN = ModInt<M>(n).inv();
    for (int i = 0; i < n; ++i) {
      as[i] *= invN;
    }
  }
  void fft(vector<ModInt<M>> &as) const {
    fft(as.data(), as.size());
  }
  void invFft(vector<ModInt<M>> &as) const {
    invFft(as.data(), as.size());
  }
  vector<ModInt<M>> convolve(vector<ModInt<M>> as, vector<ModInt<M>> bs) const {
    if (as.empty() || bs.empty()) return {};
    const int len = as.size() + bs.size() - 1;
    int n = 1;
    for (; n < len; n <<= 1) {}
    as.resize(n); fft(as);
    bs.resize(n); fft(bs);
    for (int i = 0; i < n; ++i) as[i] *= bs[i];
    invFft(as);
    as.resize(len);
    return as;
  }
  vector<ModInt<M>> square(vector<ModInt<M>> as) const {
    if (as.empty()) return {};
    const int len = as.size() + as.size() - 1;
    int n = 1;
    for (; n < len; n <<= 1) {}
    as.resize(n); fft(as);
    for (int i = 0; i < n; ++i) as[i] *= as[i];
    invFft(as);
    as.resize(len);
    return as;
  }
  // cs[k] = \sum[i-j=k] as[i] bs[j]  (0 <= k <= m-n)
  vector<ModInt<M>> middle(vector<ModInt<M>> as, vector<ModInt<M>> bs) const {
    const int m = as.size(), n = bs.size();
    assert(m >= n); assert(n >= 1);
    int len = 1;
    for (; len < m; len <<= 1) {}
    as.resize(len, 0);
    fft(as);
    std::reverse(bs.begin(), bs.end());
    bs.resize(len, 0);
    fft(bs);
    for (int i = 0; i < len; ++i) as[i] *= bs[i];
    invFft(as);
    as.resize(m);
    as.erase(as.begin(), as.begin() + (n - 1));
    return as;
  }
};


constexpr int MO = 120586241;
using Mint = ModInt<MO>;
const Fft<MO, 6, 20> FFT;
const Mint W = Mint(6).pow((MO - 1) / 10);
Mint WW[11];

int TEN[6];

int N, K;
Int T;
vector<int> A;
vector<vector<int>> R;

void dft(vector<Mint> &fs) {
  for (int n = 0; n < N; ++n) {
    for (int u0 = 0; u0 < TEN[N]; u0 += TEN[n + 1]) {
      for (int u = u0; u < u0 + TEN[n]; ++u) {
        Mint as[10] = {}, bs[10] = {};
        for (int i = 0; i < 10; ++i) as[i] = fs[u + i * TEN[n]];
        for (int i = 0; i < 10; ++i) for (int j = 0; j < 10; ++j) bs[j] += WW[(i * j) % 10] * as[i];
        for (int i = 0; i < 10; ++i) fs[u + i * TEN[n]] = bs[i];
      }
    }
  }
}

using Poly = vector<Mint>;
Poly operator+(const Poly &as, const Poly &bs) {
  Poly cs(max(as.size(), bs.size()), 0);
  for (int i = 0; i < (int)as.size(); ++i) cs[i] += as[i];
  for (int i = 0; i < (int)bs.size(); ++i) cs[i] += bs[i];
  return cs;
}
Poly operator*(const Poly &as, const Poly &bs) {
  return FFT.convolve(as, bs);
}
pair<Poly, Poly> solve(const vector<Mint> &base, const vector<int> &tar) {
  // f[n] = \sum[u] coef[u] base[u]^n
  const Mint invTen = Mint(TEN[N]).inv();
  queue<pair<Poly, Poly>> que;
  for (int u = 0; u < TEN[N]; ++u) {
    Mint coef = invTen;
    for (int n = 0; n < N; ++n) {
      const int i = u / TEN[n] % 10;
      const int j = tar[n];
      coef *= WW[10 - (i * j) % 10];
    }
    que.emplace(Poly{coef}, Poly{1, -base[u]});
  }
  for (; que.size() >= 2; ) {
    const auto a = que.front(); que.pop();
    const auto b = que.front(); que.pop();
    que.emplace(a.first * b.second + a.second * b.first, a.second * b.second);
  }
  return que.front();
}

Mint divAt(vector<Mint> ps, vector<Mint> qs, Int n) {
  for (; n; n >>= 1) {
    Poly neg = qs;
    for (int i = 1; i < (int)neg.size(); i += 2) neg[i] = -neg[i];
    Poly pps = ps * neg;
    Poly qqs = qs * neg;
    ps.clear();
    qs.clear();
    for (int i = n & 1; i < (int)pps.size(); i += 2) ps.push_back(pps[i]);
    for (int i = 0    ; i < (int)qqs.size(); i += 2) qs.push_back(qqs[i]);
  }
  return ps[0] / qs[0];
}

int main() {
  for (int i = 0; i <= 10; ++i) WW[i] = W.pow(i);
  TEN[0] = 1;
  for (int i = 1; i <= 5; ++i) TEN[i] = TEN[i - 1] * 10;
  
  for (; ~scanf("%d%d%lld", &N, &K, &T); ) {
    A.resize(N);
    for (int n = 0; n < N; ++n) scanf("%d", &A[n]);
    R.assign(K, vector<int>(N));
    for (int k = 0; k < K; ++k) for (int n = 0; n < N; ++n) scanf("%d", &R[k][n]);
    
    const Mint invK = Mint(K).inv();
    vector<Mint> fs(TEN[N], 0);
    for (int k = 0; k < K; ++k) {
      int u = 0;
      for (int n = 0; n < N; ++n) u += R[k][n] * TEN[n];
      fs[u] += invK;
    }
    dft(fs);
    
    const auto p = solve(fs, A);
    const auto q = solve(fs, vector<int>(N, 0));
    
    // [x^T] (1/(1-x)) (p/q)
    const Poly numer = p.first * q.second;
    const Poly denom = p.second * q.first * Poly{1, -1};
    const Mint ans = divAt(numer, denom, T);
    printf("%u\n", ans.x);
  }
  return 0;
}
0