結果

問題 No.3409 How Many Gift Boxes?
コンテスト
ユーザー kakel-san
提出日時 2025-12-25 22:52:22
言語 C#
(.NET 10.0.101)
結果
WA  
実行時間 -
コード長 9,839 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 9,055 ms
コンパイル使用メモリ 170,712 KB
実行使用メモリ 217,256 KB
最終ジャッジ日時 2025-12-25 22:52:58
合計ジャッジ時間 33,046 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 8 WA * 30
権限があれば一括ダウンロードができます
コンパイルメッセージ
  復元対象のプロジェクトを決定しています...
  /home/judge/data/code/main.csproj を復元しました (117 ミリ秒)。
  main -> /home/judge/data/code/bin/Release/net8.0/main.dll
  main -> /home/judge/data/code/bin/Release/net8.0/publish/

ソースコード

diff #
raw source code

using System;
using static System.Console;
using System.Linq;
using System.Collections.Generic;

class Program
{
    static int NN => int.Parse(ReadLine());
    static int[] NList => ReadLine().Split().Select(int.Parse).ToArray();
    public static void Main()
    {
        Solve();
    }
    static void Solve()
    {
        var c = NList;
        var (h, w) = (c[0], c[1]);
        var a = NList;
        var b = NList;

        var acounts = new Dictionary<int, int>();
        foreach (var ai in a)
        {
            if (acounts.ContainsKey(ai)) ++acounts[ai];
            else acounts[ai] = 1;
        }
        var bcounts = new Dictionary<int, int>();
        foreach (var bi in b)
        {
            if (bcounts.ContainsKey(bi)) ++bcounts[bi];
            else bcounts[bi] = 1;
        }
        var mod = 1_000_000_007;
        var min = 0L;
        foreach (var kv in acounts)
        {
            if (bcounts.ContainsKey(kv.Key)) min += (long)kv.Key * Math.Max(kv.Value, bcounts[kv.Key]) % mod;
            else min += (long)kv.Key * kv.Value;
        }
        foreach (var kv in bcounts)
        {
            if (!acounts.ContainsKey(kv.Key)) min += (long)kv.Key * kv.Value;
        }
        Array.Sort(a);
        Array.Sort(b);
        var seg = new LazySegTree<(long sum, long len), long>(w, new SegOp());
        var max = 0L;
        var pos = 0;
        for (var i = 0; i < h; ++i)
        {
            while (pos < w && b[pos] < a[i])
            {
                seg.Apply(pos, b[pos]);
                ++pos;
            }
            seg.Apply(pos, w, a[i]);
            max = (max + seg.AllProd().sum) % mod;
        }
        WriteLine(min);
        WriteLine(max);
    }
    struct SegOp : ILazySegTreeOperator<(long sum, long len), long>
    {
        public (long sum, long len) E() => (0, 1);
        public (long sum, long len) Op((long sum, long len) a, (long sum, long len) b) => (a.sum + b.sum, a.len + b.len);
        public long Id() => -1;
        public (long sum, long len) Mapping(long f, (long sum, long len) x)
        {
            if (f == Id()) return x;
            return (f * x.len, x.len);
        }
        public long Composition(long f, long g)
        {
            if (f == Id()) return g;
            return f;
        }
    }
    interface ILazySegTreeOperator<S, F>
    {
        /// <summary>集合S上の二項演算 S×S → S</summary>
        S Op(S a, S b);
        /// <summary>Sの単位元</summary>
        S E();
        /// <summary>写像f(x)</summary>
        S Mapping(F f, S x);
        /// <summary>写像の合成 f ○ g</summary>
        F Composition(F f, F g);
        /// <summary>恒等写像 id</summary>
        F Id();
    }
    // モノイドの型 S
    // 写像の型 F
    // 以下の関数を格納する T
    //   ・: S × S → S を計算する関数 S op(S a, S b)
    //   e を返す関数 S e()
    //   f(x) を返す関数 S mapping(F f, S x)
    //   f○gを返す関数 F composition(F f, F g)
    //   idを返す関数 F id()
    // S,Fはreadonlyにしておくと速い
    // Tの関数オーバーフローに注意
    class LazySegTree<S, F>
    {
        int _n;
        int size;
        int log;
        List<S> d;
        List<F> lz;
        ILazySegTreeOperator<S, F> op;
        public LazySegTree(int n, ILazySegTreeOperator<S, F> op)
        {
            _n = n;
            var v = new S[n];
            for (var i = 0; i < v.Length; ++i) v[i] = op.E();
            Init(v, op);
        }
        public LazySegTree(S[] v, ILazySegTreeOperator<S, F> op)
        {
            _n = v.Length;
            Init(v, op);
        }
        private void Init(S[] v, ILazySegTreeOperator<S, F> op)
        {
            size = 1;
            log = 0;
            this.op = op;
            while (size < v.Length)
            {
                size <<= 1;
                ++log;
            }
            d = Enumerable.Repeat(op.E(), size * 2).ToList();
            lz = Enumerable.Repeat(op. Id(), size).ToList();
            for (var i = 0; i < v.Length; ++i) d[size + i] = v[i];
            for (var i = size - 1; i >= 1; --i) Update(i);
        }

        /// <summary>一点更新</summary>
        public void Set(int pos, S x)
        {
            pos += size;
            for (var i = log; i >= 1; --i) Push(pos >> i);
            d[pos] = x;
            for (var i = 1; i <= log; ++i) Update(pos >> i);
        }

        /// <summary>一点取得</summary>
        public S Get(int pos)
        {
            pos += size;
            for (var i = log; i >= 1; --i) Push(pos >> i);
            return d[pos];
        }

        /// <summary>区間取得 op(a[l..r-1])</summary>
        public S Prod(int l, int r)
        {
            if (l == r) return op.E();
            l += size;
            r += size;
            for (var i = log; i >= 1; --i)
            {
                if (((l >> i) << i) != l) Push(l >> i);
                if (((r >> i) << i) != r) Push(r >> i);
            }
            S sml = op.E();
            S smr = op.E();
            while (l < r)
            {
                if ((l & 1) != 0) sml = op.Op(sml, d[l++]);
                if ((r & 1) != 0) smr = op.Op(d[--r], smr);
                l >>= 1;
                r >>= 1;
            }

            return op.Op(sml, smr);
        }

        /// <summary>全体取得 op(a[0..n-1])</summary>
        public S AllProd() => d[1];

        /// <summary>単一更新 a[p] = op_st(a[p], x)</summary>
        public void Apply(int pos, F f)
        {
            pos += size;
            for (var i = log; i >= 1; --i) Push(pos >> i);
            d[pos] = op.Mapping(f, d[pos]);
            for (var i = 1; i <= log; ++i) Update(pos >> i);
        }

        /// <summary>区間更新 i = l..r-1 について a[i] = op_st(a[i], x)</summary>
        public void Apply(int l, int r, F f)
        {
            if (l == r) return;
            l += size;
            r += size;

            for (var i = log; i >= 1; --i)
            {
                if (((l >> i) << i) != l) Push(l >> i);
                if (((r >> i) << i) != r) Push((r - 1) >> i);
            }
            {
                var l2 = l;
                var r2 = r;
                while (l < r)
                {
                    if ((l & 1) != 0) AllApply(l++, f);
                    if ((r & 1) != 0) AllApply(--r, f);
                    l >>= 1;
                    r >>= 1;
                }
                l = l2;
                r = r2;
            }
            for (var i = 1; i <= log; ++i)
            {
                if (((l >> i) << i) != l) Update(l >> i);
                if (((r >> i) << i) != r) Update((r - 1) >> i);
            }
        }

        /// <summary>segtreeの上で二分探索をする
        /// Sを引数にとりboolを返す関数gが必要
        /// fが単調であれば、g(op(a[l], a[l + 1], ... a[r - 1])) = true となる最大のrが取得される
        /// 制約
        /// ・fに副作用がない
        /// ・f(op.E()) = true
        /// </summary>
        public int MaxRight(int l, Predicate<S> g)
        {
            if (l == _n) return _n;
            l += size;
            for (var i = log; i >= 1; --i) Push(l >> i);
            S sm = op.E();
            do
            {
                while (l % 2 == 0) l >>= 1;
                if (!g(op.Op(sm, d[l])))
                {
                    while (l < size)
                    {
                        Push(l);
                        if (g(op.Op(sm, d[l])))
                        {
                            sm = op.Op(sm, d[l]);
                            ++l;
                        }
                    }
                    return l - size;
                }
                sm = op.Op(sm, d[l]);
                ++l;
            } while ((l & -l) != l);
            return _n;
        }

        /// <summary>segtreeの上で二分探索をする
        /// Sを引数にとりboolを返す関数gが必要
        /// fが単調であれば、g(op(a[l], a[l + 1], ..., a[r - 1])) = true となる最小のlが取得される
        /// 制約
        /// ・fに副作用がない
        /// f(op.E()) = true
        public int MinLeft(int r, Predicate<S> g)
        {
            if (r == 0) return 0;
            r += size;
            for (var i = log; i >= 1; --i) Push((r - 1) >> i);
            S sm = op.E();
            do
            {
                --r;
                while (r > 1 && r % 2 == 1) r >>= 1;
                if (!g(op.Op(d[r], sm)))
                {
                    while (r < size)
                    {
                        Push(r);
                        r = (2 * r + 1);
                        if (g(op.Op(d[r], sm)))
                        {
                            sm = op.Op(d[r], sm);
                            --r;
                        }
                    }
                    return r + 1 - size;
                }
                sm = op.Op(d[r], sm);
            } while ((r & -r) != r);
            return 0;
        }

        void Update(int k)
        {
            d[k] = op.Op(d[2 * k], d[2 * k + 1]);
        }
        void AllApply(int k, F f)
        {
            d[k] = op.Mapping(f, d[k]);
            if (k < size) lz[k] = op.Composition(f, lz[k]);
        }
        void Push(int k)
        {
            AllApply(2 * k, lz[k]);
            AllApply(2 * k + 1, lz[k]);
            lz[k] = op.Id();
        }
    }
}
0