結果

問題 No.3423 Minimum Xor Query
コンテスト
ユーザー kidodesu
提出日時 2025-12-28 20:37:59
言語 PyPy3
(7.3.17)
結果
TLE  
実行時間 -
コード長 6,991 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 261 ms
コンパイル使用メモリ 82,444 KB
実行使用メモリ 115,576 KB
最終ジャッジ日時 2026-01-11 13:04:26
合計ジャッジ時間 12,736 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right

class SortedMultiset:
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24
    
    def __init__(self, a = []):
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        n = self.size = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self):
        for i in self.a:
            for j in i: yield j

    def __reversed__(self):
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x):
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def count(self, x) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a, b, i = self._position(x)
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b+1] = [a[:mid], a[mid:]]
    
    def _pop(self, a, b: int, i: int):
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True

    def lt(self, x):
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x):
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x):
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x):
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int):
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1):
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError

    def index(self, x) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

n, q = map(int, input().split())
A = list(map(int, input().split()))
A_ = [A[i] for i in range(n)]
inf = 1 << 30
q0 = q1 = 0
Q = [list(map(int, input().split())) for _ in range(q)]
Q_ = []
T = []
for i in range(q):
    if Q[i][0] == 1:
        Q[i][1] -= 1
        T.append((Q[i][1], A_[Q[i][1]], Q[i][2]))
        A_[Q[i][1]] = Q[i][2]
        q0 += 1
    else:
        Q_.append((q0, Q[i][1], q1))
        q1 += 1
Ans = [-1] * q1

b_siz = int(n // q0 ** 0.5) + 1
b_cnt = n // b_siz + 1
D = [[] for _ in range(b_cnt)]
for i in range(q1):
    t, r, idx = Q_[i]
    D[r//b_siz].append((t, r, idx))
for i in range(b_cnt):
    if i % 2:
        D[i].sort(reverse = True)
    else:
        D[i].sort()

nt = nr = 0

S = SortedMultiset([-inf, inf])
M = SortedMultiset([-inf^inf])

for nd in D:
    for t, r, ans_idx in nd:
        if nt <= t:
            for now in range(nt, t):
                i, pa, a = T[now]
                if i < nr:
                    idx = S.index(pa)
                    M.discard(S[idx-1]^S[idx])
                    M.discard(S[idx]^S[idx+1])
                    M.add(S[idx-1]^S[idx+1])
                    S.discard(pa)
                    S.add(a)
                    idx = S.index(a)
                    M.discard(S[idx-1]^S[idx+1])
                    M.add(S[idx-1]^S[idx])
                    M.add(S[idx]^S[idx+1])
                A[i] = a
        else:
            for now in range(nt-1, t-1, -1):
                i, pa, a = T[now]
                if i < nr:
                    idx = S.index(a)
                    M.discard(S[idx-1]^S[idx])
                    M.discard(S[idx]^S[idx+1])
                    M.add(S[idx-1]^S[idx+1])
                    S.discard(a)
                    S.add(pa)
                    idx = S.index(pa)
                    M.discard(S[idx-1]^S[idx+1])
                    M.add(S[idx-1]^S[idx])
                    M.add(S[idx]^S[idx+1])
                A[i] = pa
        if nr <= r:
            for now in range(nr, r):
                a = A[now]
                S.add(a)
                idx = S.index(a)
                M.discard(S[idx-1]^S[idx+1])
                M.add(S[idx-1]^S[idx])
                M.add(S[idx]^S[idx+1])
        else:
            for now in range(nr-1, r-1, -1):
                a = A[now]
                idx = S.index(a)
                M.discard(S[idx-1]^S[idx])
                M.discard(S[idx]^S[idx+1])
                M.add(S[idx-1]^S[idx+1])
                S.discard(a)
        nt, nr = t, r
        Ans[ans_idx] = M[1]

for ans in Ans:
    print(ans)
0