結果

問題 No.3423 Minimum Xor Query
コンテスト
ユーザー kidodesu
提出日時 2025-12-29 20:50:00
言語 PyPy3
(7.3.17)
結果
WA  
実行時間 -
コード長 8,462 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 213 ms
コンパイル使用メモリ 82,540 KB
実行使用メモリ 101,568 KB
最終ジャッジ日時 2026-01-11 13:05:10
合計ジャッジ時間 10,975 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 5 WA * 13
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
import time
from heapq import *
def main(B_SIZE, n, q, A, Q):
    time0 = time.time()

    class SortedMultiset:
        BUCKET_RATIO = 16
        SPLIT_RATIO = 24
        
        def __init__(self, a = []):
            "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
            a = list(a)
            n = self.size = len(a)
            if any(a[i] > a[i + 1] for i in range(n - 1)):
                a.sort()
            num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
            self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

        def __iter__(self):
            for i in self.a:
                for j in i: yield j

        def __reversed__(self):
            for i in reversed(self.a):
                for j in reversed(i): yield j
        
        def __eq__(self, other) -> bool:
            return list(self) == list(other)
        
        def __len__(self) -> int:
            return self.size
        
        def __repr__(self) -> str:
            return "SortedMultiset" + str(self.a)
        
        def __str__(self) -> str:
            s = str(list(self))
            return "{" + s[1 : len(s) - 1] + "}"

        def _position(self, x):
            "return the bucket, index of the bucket and position in which x should be. self must not be empty."
            for i, a in enumerate(self.a):
                if x <= a[-1]: break
            return (a, i, bisect_left(a, x))

        def __contains__(self, x) -> bool:
            if self.size == 0: return False
            a, _, i = self._position(x)
            return i != len(a) and a[i] == x

        def count(self, x) -> int:
            "Count the number of x."
            return self.index_right(x) - self.index(x)

        def add(self, x) -> None:
            "Add an element. / O(√N)"
            if self.size == 0:
                self.a = [[x]]
                self.size = 1
                return
            a, b, i = self._position(x)
            a.insert(i, x)
            self.size += 1
            if len(a) > len(self.a) * self.SPLIT_RATIO:
                mid = len(a) >> 1
                self.a[b:b+1] = [a[:mid], a[mid:]]
        
        def _pop(self, a, b: int, i: int):
            ans = a.pop(i)
            self.size -= 1
            if not a: del self.a[b]
            return ans

        def discard(self, x) -> bool:
            "Remove an element and return True if removed. / O(√N)"
            if self.size == 0: return False
            a, b, i = self._position(x)
            if i == len(a) or a[i] != x: return False
            self._pop(a, b, i)
            return True

        def lt(self, x):
            "Find the largest element < x, or None if it doesn't exist."
            for a in reversed(self.a):
                if a[0] < x:
                    return a[bisect_left(a, x) - 1]

        def le(self, x):
            "Find the largest element <= x, or None if it doesn't exist."
            for a in reversed(self.a):
                if a[0] <= x:
                    return a[bisect_right(a, x) - 1]

        def gt(self, x):
            "Find the smallest element > x, or None if it doesn't exist."
            for a in self.a:
                if a[-1] > x:
                    return a[bisect_right(a, x)]

        def ge(self, x):
            "Find the smallest element >= x, or None if it doesn't exist."
            for a in self.a:
                if a[-1] >= x:
                    return a[bisect_left(a, x)]
        
        def __getitem__(self, i: int):
            "Return the i-th element."
            if i < 0:
                for a in reversed(self.a):
                    i += len(a)
                    if i >= 0: return a[i]
            else:
                for a in self.a:
                    if i < len(a): return a[i]
                    i -= len(a)
            raise IndexError
        
        def pop(self, i: int = -1):
            "Pop and return the i-th element."
            if i < 0:
                for b, a in enumerate(reversed(self.a)):
                    i += len(a)
                    if i >= 0: return self._pop(a, ~b, i)
            else:
                for b, a in enumerate(self.a):
                    if i < len(a): return self._pop(a, b, i)
                    i -= len(a)
            raise IndexError

        def index(self, x) -> int:
            "Count the number of elements < x."
            ans = 0
            for a in self.a:
                if a[-1] >= x:
                    return ans + bisect_left(a, x)
                ans += len(a)
            return ans

        def index_right(self, x) -> int:
            "Count the number of elements <= x."
            ans = 0
            for a in self.a:
                if a[-1] > x:
                    return ans + bisect_right(a, x)
                ans += len(a)
            return ans
    A_ = [A[i] for i in range(n)]
    inf = 1 << 30
    q0 = q1 = 0
    Q_ = []
    T = []
    for i in range(q):
        if Q[i][0] == 1:
            T.append((Q[i][1], A_[Q[i][1]], Q[i][2]))
            A_[Q[i][1]] = Q[i][2]
            q0 += 1
        else:
            Q_.append((q0, Q[i][1], q1))
            q1 += 1
    Ans = [-1] * q1

    b_siz = int((2*n*q0/q1) ** 0.5) + 1
    b_siz = B_SIZE
    b_cnt = n // b_siz + 1
    D = [[] for _ in range(b_cnt)]
    for i in range(q1):
        t, r, idx = Q_[i]
        D[r//b_siz].append((t, r, idx))
    for i in range(b_cnt):
        if i % 2:
            D[i].sort(reverse = True)
        else:
            D[i].sort()

    nt = nr = 0

    S = SortedMultiset([inf])
    hq0 = []
    hq1 = []
    cnt = 0
    for x in range(b_cnt):
        for now in range(max(0, (x-1)*b_siz), min(n, x*b_siz)):
            a = A[now]
            S.add(a)
            idx = S.index(a)
            if idx:
                heappush(hq1, S[idx-1]^S[idx+1])
                heappush(hq0, S[idx-1]^S[idx])
            heappush(hq0, S[idx]^S[idx+1])
        for t, r, ans_idx in D[x]:
            if nt <= t:
                for now in range(nt, t):
                    i, pa, a = T[now]
                    if i < nr:
                        idx = S.index(pa)
                        if idx:
                            heappush(hq0, S[idx-1]^S[idx+1])
                            heappush(hq1, S[idx-1]^S[idx])
                        heappush(hq1, S[idx]^S[idx+1])
                        S.discard(pa)
                        S.add(a)
                        idx = S.index(a)
                        if idx:
                            heappush(hq1, S[idx-1]^S[idx+1])
                            heappush(hq0, S[idx-1]^S[idx])
                        heappush(hq0, S[idx]^S[idx+1])
                    A[i] = a
            else:
                for now in range(nt-1, t-1, -1):
                    i, pa, a = T[now]
                    if i < nr:
                        idx = S.index(a)
                        if idx:
                            heappush(hq0, S[idx-1]^S[idx+1])
                            heappush(hq1, S[idx-1]^S[idx])
                        heappush(hq1, S[idx]^S[idx+1])
                        S.discard(a)
                        S.add(pa)
                        idx = S.index(pa)
                        if idx:
                            heappush(hq1, S[idx-1]^S[idx+1])
                            heappush(hq0, S[idx-1]^S[idx])
                        heappush(hq0, S[idx]^S[idx+1])
                    A[i] = pa
            while hq0 and hq1 and hq0[0] == hq1[0]:
                heappop(hq0)
                heappop(hq1)
            if hq0:
                ans = hq0[0]
            else:
                ans = inf
            B = A[x*b_siz : r]
            nt = t
            B.sort()
            for i in range(len(B)-1):
                ans = min(ans, B[i+1]^B[i])
            for b in B:
                idx = S.index(b)
                if idx:
                    ans = min(ans, b^S[idx-1])
                ans = min(ans, b^S[idx])
            Ans[ans_idx] = ans


    for ans in Ans:
        print(ans)

    #print(time.time()-time0)
    #print()

n, q = map(int, input().split())
A = list(map(int, input().split()))
Q = [list(map(int, input().split())) for _ in range(q)]
for i in range(q):
    if Q[i][0] == 1: Q[i][1] -= 1


main(10, n, q, A, Q)
0