結果
| 問題 | No.583 鉄道同好会 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2026-01-03 07:47:27 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 162 ms / 2,000 ms |
| コード長 | 39,525 bytes |
| 記録 | |
| コンパイル時間 | 3,408 ms |
| コンパイル使用メモリ | 309,036 KB |
| 実行使用メモリ | 15,872 KB |
| 最終ジャッジ日時 | 2026-01-03 07:47:32 |
| 合計ジャッジ時間 | 5,238 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 16 |
コンパイルメッセージ
main.cpp:1209:9: warning: '#pragma once' in main file [-Wpragma-once-outside-header]
1209 | #pragma once
| ^~~~
main.cpp: In function 'int kth(int, int, int)':
main.cpp:1345:1: warning: control reaches end of non-void function [-Wreturn-type]
1345 | }
| ^
ソースコード
#include <algorithm>
#include <bit>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <numeric>
#include <optional>
#include <queue>
#include <ranges>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <iomanip>
#include <random>
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) <
// 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
using mint = modint998244353;
/*
g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A
./A < input.in > output.out
*/
template <typename CostType>
struct Edge {
CostType cost;
int src, dst;
explicit Edge(const int src, const int dst, const CostType cost = 0)
: cost(cost), src(src), dst(dst) {}
auto operator<=>(const Edge& x) const = default;
};
template <typename CostType>
struct HeavyLightDecomposition {
std::vector<int> parent, subtree, id, inv, head;
std::vector<CostType> cost;
explicit HeavyLightDecomposition(
const std::vector<std::vector<Edge<CostType>>>& graph, const int root = 0)
: graph(graph) {
const int n = graph.size();
parent.assign(n, -1);
subtree.assign(n, 1);
dfs1(root);
id.resize(n);
inv.resize(n);
head.assign(n, root);
int cur_id = 0;
dfs2(root, &cur_id);
}
template <typename Fn>
void update_v(int u, int v, const Fn f) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
f(std::max(id[head[v]], id[u]), id[v] + 1);
if (head[u] == head[v]) break;
v = parent[head[v]];
}
}
template <typename F, typename G, typename T>
T query_v(int u, int v, const F f, const G g, const T id_t) const {
T left = id_t, right = id_t;
while (true) {
if (id[u] > id[v]) {
std::swap(u, v);
std::swap(left, right);
}
// 在 v 这一侧的链上,查询 [max(id[head[v]], id[u]), id[v]] 这些点
left = g(left, f(std::max(id[head[v]], id[u]), id[v] + 1));
if (head[u] == head[v]) break;
v = parent[head[v]];
}
return g(left, right);
}
template <typename Fn>
void update_subtree_v(const int ver, const Fn f) const {
f(id[ver], id[ver] + subtree[ver]);
}
template <typename T, typename Fn>
T query_subtree_v(const int ver, const Fn f) const {
return f(id[ver], id[ver] + subtree[ver]);
}
template <typename Fn>
void update_e(int u, int v, const Fn f) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
if (head[u] == head[v]) {
f(id[u], id[v]);
break;
} else {
f(id[head[v]] - 1, id[v]);
v = parent[head[v]];
}
}
}
template <typename F, typename G, typename T>
T query_e(int u, int v, const F f, const G g, const T id_t) const {
T left = id_t, right = id_t;
while (true) {
if (id[u] > id[v]) {
std::swap(u, v);
std::swap(left, right);
}
if (head[u] == head[v]) {
left = g(left, f(id[u], id[v]));
break;
} else {
left = g(left, f(id[head[v]] - 1, id[v]));
v = parent[head[v]];
}
}
return g(left, right);
}
template <typename Fn>
void update_subtree_e(const int ver, const Fn f) const {
f(id[ver], id[ver] + subtree[ver] - 1);
}
template <typename T, typename Fn>
T query_subtree_e(const int ver, const Fn f) const {
return f(id[ver], id[ver] + subtree[ver] - 1);
}
// 对树边 (u, v) 做一次单边更新:调用 f(pos)
// 其中 pos 是该边在“边序列”里的唯一位置(本实现为 id[child] - 1)。
template <typename Fn>
void update_single_edge(int u, int v, const Fn& f) const {
if (parent[u] == v) std::swap(u, v);
const int pos = id[v] - 1;
f(pos);
}
int lowest_common_ancestor(int u, int v) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
if (head[u] == head[v]) break;
v = parent[head[v]];
}
return u;
}
private:
std::vector<std::vector<Edge<CostType>>> graph;
void dfs1(const int ver) {
for (int i = 0; std::cmp_less(i, graph[ver].size()); ++i) {
Edge<CostType>& e = graph[ver][i];
if (e.dst != parent[ver]) {
parent[e.dst] = ver;
dfs1(e.dst);
subtree[ver] += subtree[e.dst];
if (subtree[e.dst] > subtree[graph[ver].front().dst]) {
std::swap(e, graph[ver].front());
}
}
}
}
void dfs2(const int ver, int* cur_id) {
id[ver] = (*cur_id)++;
inv[id[ver]] = ver;
for (const Edge<CostType>& e : graph[ver]) {
if (e.dst != parent[ver]) {
head[e.dst] = (e.dst == graph[ver].front().dst ? head[ver] : e.dst);
cost.emplace_back(e.cost);
dfs2(e.dst, cur_id);
}
}
}
};
struct BitRank {
// block: bit 列を管理, count: block ごとに立っている 1 の数を管理
std::vector<unsigned long long> block;
std::vector<unsigned int> count;
BitRank() {}
void resize(const unsigned int num) {
block.resize(((num + 1) >> 6) + 1, 0);
count.resize(block.size(), 0);
}
// i ビット目を val(0,1) にセット
void set(const unsigned int i, const unsigned long long val) {
block[i >> 6] |= (val << (i & 63));
}
void build() {
for (unsigned int i = 1; i < block.size(); i++) {
count[i] = count[i - 1] + __builtin_popcountll(block[i - 1]);
}
}
// [0, i) ビットの 1 の数
unsigned int rank1(const unsigned int i) const {
return count[i >> 6] +
__builtin_popcountll(block[i >> 6] & ((1ULL << (i & 63)) - 1ULL));
}
// [i, j) ビットの 1 の数
unsigned int rank1(const unsigned int i, const unsigned int j) const {
return rank1(j) - rank1(i);
}
// [0, i) ビットの 0 の数
unsigned int rank0(const unsigned int i) const { return i - rank1(i); }
// [i, j) ビットの 0 の数
unsigned int rank0(const unsigned int i, const unsigned int j) const {
return rank0(j) - rank0(i);
}
};
class WaveletMatrix {
private:
unsigned int height;
std::vector<BitRank> B;
std::vector<int> pos;
std::vector<std::vector<long long>> rui;
public:
WaveletMatrix() {}
WaveletMatrix(std::vector<int> vec)
: WaveletMatrix(vec, *std::max_element(vec.begin(), vec.end()) + 1) {}
// sigma:文字の種類数
WaveletMatrix(std::vector<int> vec, const unsigned int sigma) {
init(vec, sigma);
}
void init(std::vector<int>& vec, const unsigned int sigma) {
height = (sigma == 1) ? 1 : (64 - __builtin_clzll(sigma - 1));
B.resize(height), pos.resize(height);
std::vector<int> A = vec;
rui.resize(height + 1);
for (unsigned int i = 0; i < height; ++i) {
B[i].resize(vec.size());
for (unsigned int j = 0; j < vec.size(); ++j) {
B[i].set(j, get(vec[j], height - i - 1));
}
B[i].build();
auto it = stable_partition(vec.begin(), vec.end(), [&](int c) {
return !get(c, height - i - 1);
});
pos[i] = it - vec.begin();
}
for (unsigned int i = 0; i <= height; ++i) {
rui[i].resize(A.size() + 1);
for (int j = 1; j <= A.size(); j++) {
rui[i][j] = rui[i][j - 1] + A[j - 1];
}
if (i == height) break;
std::stable_partition(A.begin(), A.end(),
[&](int c) { return !get(c, height - i - 1); });
}
}
// val の i ビット目の値を返す(0,1)
int get(const int val, const int i) { return val >> i & 1; }
// [l, r) の間に現れる値 val の数
int rank(const int val, const int l, const int r) {
return rank(val, r) - rank(val, l);
}
// [0, i) の間に現れる値 val の数
int rank(int val, int i) {
int p = 0;
for (unsigned int j = 0; j < height; ++j) {
if (get(val, height - j - 1)) {
p = pos[j] + B[j].rank1(p);
i = pos[j] + B[j].rank1(i);
} else {
p = B[j].rank0(p);
i = B[j].rank0(i);
}
}
return i - p;
}
// [l, r) の k(0,1,2...) 番目に小さい値を返す
int quantile(int k, int l, int r) {
int res = 0;
for (unsigned int i = 0; i < height; ++i) {
const int j = B[i].rank0(l, r);
if (j > k) {
l = B[i].rank0(l);
r = B[i].rank0(r);
} else {
l = pos[i] + B[i].rank1(l);
r = pos[i] + B[i].rank1(r);
k -= j;
res |= (1 << (height - i - 1));
}
}
return res;
}
long long topKsum(int k, int l, int r) {
if (l == r) return 0LL;
long long res = 0;
int atai = 0;
for (unsigned int i = 0; i < height; ++i) {
const int j = B[i].rank0(l, r);
if (j > k) {
l = B[i].rank0(l);
r = B[i].rank0(r);
} else {
int l2 = B[i].rank0(l);
int r2 = B[i].rank0(r);
res += rui[i + 1][r2] - rui[i + 1][l2];
l = pos[i] + B[i].rank1(l);
r = pos[i] + B[i].rank1(r);
k -= j;
atai |= (1 << (height - i - 1));
}
}
res += (long long)atai * k;
return res;
}
int rangefreq(const int i, const int j, const int a, const int b, const int l,
const int r, const int x) {
if (i == j || r <= a || b <= l) return 0;
const int mid = (l + r) >> 1;
if (a <= l && r <= b) {
return j - i;
} else {
const int left =
rangefreq(B[x].rank0(i), B[x].rank0(j), a, b, l, mid, x + 1);
const int right = rangefreq(pos[x] + B[x].rank1(i),
pos[x] + B[x].rank1(j), a, b, mid, r, x + 1);
return left + right;
}
}
// [l,r) で値が [a,b) 内に含まれる数を返す
int rangefreq(const int l, const int r, const int a, const int b) {
return rangefreq(l, r, a, b, 0, 1 << height, 0);
}
int rangemin(const int i, const int j, const int a, const int b, const int l,
const int r, const int x, const int val) {
if (i == j || r <= a || b <= l) return -1;
if (r - l == 1) return val;
const int mid = (l + r) >> 1;
const int res =
rangemin(B[x].rank0(i), B[x].rank0(j), a, b, l, mid, x + 1, val);
if (res < 0)
return rangemin(pos[x] + B[x].rank1(i), pos[x] + B[x].rank1(j), a, b, mid,
r, x + 1, val + (1 << (height - x - 1)));
else
return res;
}
// [l,r) で値が [a,b) 内に最小の数を返す(数が存在しない場合は -1 を返す)
int rangemin(int l, int r, int a, int b) {
return rangemin(l, r, a, b, 0, 1 << height, 0, 0);
}
};
template <typename T>
struct LazySegmentTree {
using Monoid = typename T::Monoid;
using LazyMonoid = typename T::LazyMonoid;
explicit LazySegmentTree(const int n)
: LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}
explicit LazySegmentTree(const std::vector<Monoid>& a)
: n(a.size()), height(0) {
while ((1 << height) < n) ++height;
sz = 1 << height;
lazy.assign(sz, T::lazy_id());
data.assign(sz << 1, T::m_id());
std::copy(a.begin(), a.end(), data.begin() + sz);
for (int i = sz - 1; i > 0; --i) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
void set(int idx, const Monoid val) {
idx += sz;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = val;
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int idx, const LazyMonoid val) {
idx += sz;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = T::apply(data[idx], val);
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int left, int right, const LazyMonoid val) {
if (right <= left) return;
left += sz;
right += sz;
const int ctz_left = __builtin_ctz(left);
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = __builtin_ctz(right);
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply_sub(l++, val);
if (r & 1) apply_sub(--r, val);
}
for (int i = left >> (ctz_left + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
for (int i = right >> (ctz_right + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
Monoid get(int left, int right) {
if (right <= left) return T::m_id();
left += sz;
right += sz;
const int ctz_left = __builtin_ctz(left);
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = __builtin_ctz(right);
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
Monoid res_l = T::m_id(), res_r = T::m_id();
for (; left < right; left >>= 1, right >>= 1) {
if (left & 1) res_l = T::m_merge(res_l, data[left++]);
if (right & 1) res_r = T::m_merge(data[--right], res_r);
}
return T::m_merge(res_l, res_r);
}
Monoid operator[](const int idx) {
const int node = idx + sz;
for (int i = height; i > 0; --i) {
propagate(node >> i);
}
return data[node];
}
template <typename G>
int find_right(int left, const G g) {
if (left >= n) return n;
left += sz;
for (int i = height; i > 0; --i) {
propagate(left >> i);
}
Monoid val = T::m_id();
do {
while (!(left & 1)) left >>= 1;
Monoid nxt = T::m_merge(val, data[left]);
if (!g(nxt)) {
while (left < sz) {
propagate(left);
left <<= 1;
nxt = T::m_merge(val, data[left]);
if (g(nxt)) {
val = nxt;
++left;
}
}
return left - sz;
}
val = nxt;
++left;
} while (__builtin_popcount(left) > 1);
return n;
}
template <typename G>
int find_left(int right, const G g) {
if (right <= 0) return -1;
right += sz;
for (int i = height; i > 0; --i) {
propagate((right - 1) >> i);
}
Monoid val = T::m_id();
do {
--right;
while (right > 1 && (right & 1)) right >>= 1;
Monoid nxt = T::m_merge(data[right], val);
if (!g(nxt)) {
while (right < sz) {
propagate(right);
right = (right << 1) + 1;
nxt = T::m_merge(data[right], val);
if (g(nxt)) {
val = nxt;
--right;
}
}
return right - sz;
}
val = nxt;
} while (__builtin_popcount(right) > 1);
return -1;
}
const int n;
int sz, height;
std::vector<Monoid> data;
std::vector<LazyMonoid> lazy;
void apply_sub(const int idx, const LazyMonoid& val) {
data[idx] = T::apply(data[idx], val);
if (idx < sz) lazy[idx] = T::lazy_merge(lazy[idx], val);
}
void propagate(const int idx) {
apply_sub(idx << 1, lazy[idx]);
apply_sub((idx << 1) + 1, lazy[idx]);
lazy[idx] = T::lazy_id();
}
};
namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
using Monoid = T;
using LazyMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
static constexpr LazyMonoid lazy_id() {
return std::numeric_limits<LazyMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return b == lazy_id() ? a : b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) {
return b == lazy_id() ? a : b;
}
};
template <typename T>
struct RangeMaximumAndUpdateQuery {
using Monoid = T;
using LazyMonoid = T;
static constexpr Monoid m_id() {
return std::numeric_limits<Monoid>::lowest();
}
static constexpr LazyMonoid lazy_id() {
return std::numeric_limits<LazyMonoid>::lowest();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return b == lazy_id() ? a : b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) {
return b == lazy_id() ? a : b;
}
};
template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
using Monoid = T;
using LazyMonoid = T;
static constexpr Monoid m_id() { return Inf; }
static constexpr LazyMonoid lazy_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) { return a + b; }
};
template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
using Monoid = T;
using LazyMonoid = T;
static constexpr Monoid m_id() { return -Inf; }
static constexpr LazyMonoid lazy_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) { return a + b; }
};
template <typename T>
struct RangeSumAndUpdateQuery {
using Monoid = struct {
T sum;
int len;
};
using LazyMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr LazyMonoid lazy_id() {
return std::numeric_limits<LazyMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return b == lazy_id() ? a : b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) {
return Monoid{b == lazy_id() ? a.sum : b * a.len, a.len};
}
};
template <typename T>
struct RangeSumAndAddQuery {
using Monoid = struct {
T sum;
int len;
};
using LazyMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr LazyMonoid lazy_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static LazyMonoid lazy_merge(const LazyMonoid& a, const LazyMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const LazyMonoid& b) {
return Monoid{a.sum + b * a.len, a.len};
}
};
} // namespace monoid
#pragma once
// credit emthrm.github.io/library
template <typename T>
struct SegmentTree {
using Monoid = typename T::Monoid;
explicit SegmentTree(int n) : SegmentTree(std::vector<Monoid>(n, T::id())) {}
explicit SegmentTree(const std::vector<Monoid>& a) : n(a.size()), sz(1) {
while (sz < n) sz <<= 1;
data.assign(sz << 1, T::id());
std::copy(a.begin(), a.end(), data.begin() + sz);
for (int i = sz - 1; i > 0; --i) {
data[i] = T::merge(data[i << 1], data[(i << 1) + 1]);
}
}
void set(int idx, const Monoid val) {
idx += sz;
data[idx] = val;
while (idx >>= 1)
data[idx] = T::merge(data[idx << 1], data[(idx << 1) + 1]);
}
Monoid get(int left, int right) const {
Monoid res_l = T::id(), res_r = T::id();
for (left += sz, right += sz; left < right; left >>= 1, right >>= 1) {
if (left & 1) res_l = T::merge(res_l, data[left++]);
if (right & 1) res_r = T::merge(data[--right], res_r);
}
return T::merge(res_l, res_r);
}
Monoid operator[](const int idx) const { return data[idx + sz]; }
private:
const int n;
int sz; // sz + 原数组坐标 = 线段树里的编号,1 based
std::vector<Monoid> data;
};
namespace monoid {
template <typename T>
struct RangeMinimumQuery {
using Monoid = T;
static constexpr Monoid id() { return std::numeric_limits<Monoid>::max(); }
static Monoid merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
};
template <typename T>
struct RangeMaximumQuery {
using Monoid = T;
static constexpr Monoid id() { return std::numeric_limits<Monoid>::lowest(); }
static Monoid merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
};
template <typename T>
struct RangeSumQuery {
using Monoid = T;
static constexpr Monoid id() { return 0; }
static Monoid merge(const Monoid& a, const Monoid& b) { return a + b; }
};
template <typename T>
struct RangeXorQuery {
using Monoid = T;
static constexpr Monoid id() { return 0; }
static Monoid merge(const Monoid& a, const Monoid& b) { return a ^ b; }
};
} // namespace monoid
struct TupleHash {
template <class T>
static void hash_combine(std::size_t& seed, const T& v) {
seed ^= std::hash<T>{}(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
template <class... Ts>
std::size_t operator()(const std::tuple<Ts...>& t) const noexcept {
std::size_t seed = 0;
std::apply([&](const auto&... xs) { (hash_combine(seed, xs), ...); }, t);
return seed;
}
};
// unordered_map<tuple<int, long long>, int, TupleHash> cnt;
struct ChthollyNode {
int l, r;
mutable int v;
ChthollyNode(int l, int r, int v) : l(l), r(r), v(v) {}
bool operator<(const ChthollyNode& o) const { return l < o.l; }
};
std::set<ChthollyNode> tr;
std::set<ChthollyNode>::iterator split(int pos) {
auto it = tr.lower_bound(ChthollyNode(pos, 0, 0));
if (it != tr.end() && it->l == pos) return it;
it--;
int l = it->l, r = it->r, v = it->v;
tr.erase(it);
tr.insert(ChthollyNode(l, pos - 1, v));
return tr.insert(ChthollyNode(pos, r, v)).first;
}
// range add
void add(int l, int r, int v) { // [l, r]
auto end = split(r + 1);
for (auto it = split(l); it != end; it++) it->v += v;
}
// range assign
void assign(int l, int r, int v) {
auto end = split(r + 1), begin = split(l); // 顺序不能颠倒,否则可能RE
tr.erase(begin, end); // 清除一系列节点
tr.insert(ChthollyNode(l, r, v)); // 插入新的节点
}
// range kth
int kth(int l, int r, int k) {
auto end = split(r + 1);
std::vector<std::pair<int, int>> v; // 这个pair里存节点的值和区间长度
for (auto it = split(l); it != end; it++)
v.emplace_back(it->v, it->r - it->l + 1);
std::sort(v.begin(), v.end()); // 直接按节点的值的大小排下序
for (int i = 0; i < v.size(); i++) // 然后挨个丢出来,直到丢出k个元素为止
{
k -= v[i].second;
if (k <= 0) return v[i].first;
}
}
int ones = 0; // 全局变量,记录当前数组中 1 的个数
void range_xor(int l, int r) {
auto itR = split(r + 1);
for (auto it = split(l); it != itR; ++it) {
int len = it->r - it->l + 1;
ones += (it->v ? -len : +len);
it->v ^= 1;
}
}
void paint_black(int l, int r) {
auto itR = split(r + 1);
auto itL = split(l);
for (auto it = itL; it != itR; ++it) {
if (it->v == 1) ones -= (it->r - it->l + 1);
}
tr.erase(itL, itR);
tr.insert(ChthollyNode(l, r, 1));
ones += (r - l + 1);
}
struct EulerianTrailInUndirectedGraph {
std::vector<int> trail;
explicit EulerianTrailInUndirectedGraph(const int n)
: n(n), is_visited(n), graph(n) {}
void add_edge(const int u, const int v) {
graph[u].emplace_back(v, graph[v].size());
graph[v].emplace_back(u, graph[u].size() - 1);
}
bool build(int s = -1) {
trail.clear();
int odd_deg = 0, edge_num = 0;
for (int i = 0; i < n; ++i) {
if (graph[i].size() & 1) {
++odd_deg;
if (s == -1) s = i;
}
edge_num += graph[i].size();
}
edge_num >>= 1;
if (edge_num == 0) {
trail = {s == -1 ? 0 : s};
return true;
}
if (odd_deg == 0) {
if (s == -1) {
s = std::distance(
graph.begin(),
std::find_if_not(graph.begin(), graph.end(),
[](const std::vector<Edge>& edges) -> bool {
return edges.empty();
}));
}
} else if (odd_deg != 2) {
return false;
}
for (int i = 0; i < n; ++i) {
is_visited[i].assign(graph[i].size(), false);
}
dfs(s);
if (std::cmp_equal(trail.size(), edge_num + 1)) {
std::reverse(trail.begin(), trail.end());
return true;
}
trail.clear();
return false;
}
private:
struct Edge {
int dst, rev;
explicit Edge(const int dst, const int rev) : dst(dst), rev(rev) {}
};
const int n;
std::vector<std::vector<bool>> is_visited;
std::vector<std::vector<Edge>> graph;
void dfs(const int ver) {
const int deg = graph[ver].size();
for (int i = 0; i < deg; ++i) {
if (!is_visited[ver][i]) {
const int dst = graph[ver][i].dst;
is_visited[ver][i] = true;
is_visited[dst][graph[ver][i].rev] = true;
dfs(dst);
}
}
trail.emplace_back(ver);
}
};
int main() {
int n, m;
std::cin >> n >> m ;
EulerianTrailInUndirectedGraph g(n);
for (int i = 0; i < m; ++i) {
int u, v;
std::cin >> u >> v;
g.add_edge(u, v);
}
if (g.build()) {
std::cout << "YES\n";
} else {
std::cout << "NO\n";
}
}