結果

問題 No.3044 よくあるカエルさん
コンテスト
ユーザー zawakasu
提出日時 2026-01-03 20:56:37
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 41,016 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,799 ms
コンパイル使用メモリ 232,968 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2026-01-03 20:56:43
合計ジャッジ時間 5,269 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#line 1 "3044.test.cpp"
// #define PROBLEM "https://yukicoder.me/problems/no/3044"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"

#line 2 "/home/zawatin/compro/cp-documentation/Src/FPS/FPSNTTFriendly.hpp"

#line 2 "/home/zawatin/compro/cp-documentation/Src/FPS/FPS.hpp"

#line 2 "/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp"

#include <cstdint>
#include <cstddef>

namespace zawa {

using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;

using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;

using usize = std::size_t;

} // namespace zawa
#line 4 "/home/zawatin/compro/cp-documentation/Src/FPS/FPS.hpp"

#include <concepts>

namespace zawa {

namespace concepts {

template <class FPS>
concept IndexedFPS = requires(FPS f, usize i) {
    typename FPS::value_type;
    { f.size() } -> std::convertible_to<usize>;
    { f[i] } -> std::convertible_to<typename FPS::value_type>;
    f.reserve(0);
    f.push_back(f[i]);
};

template <class FPS, class Conv>
concept Convolution = 
    std::regular_invocable<Conv, const FPS&, const FPS&> &&
    std::same_as<std::invoke_result_t<Conv, const FPS&, const FPS&>, FPS>;

} // namespace concepts

struct FPSMult {
    template <class FPS>
    requires requires(const FPS& a, const FPS& b) {
        { a * b } -> std::same_as<FPS>;
    }
    FPS operator()(const FPS& a, const FPS& b) const {
        return a * b;
    }
};

struct NaiveConvolution {
    template <class FPS>
    FPS operator()(const FPS& a, const FPS& b) const {
        if (a.empty())
            return b;
        if (b.empty())
            return a;
        FPS res(a.size() + b.size() - 1);
        for (usize i = 0 ; i < a.size() ; i++)
            for (usize j = 0 ; j < b.size() ; j++)
                res[i + j] += a[i] * b[j];
        return res;
    }
};

} // namespace zawa
#line 5 "/home/zawatin/compro/cp-documentation/Src/FPS/FPSNTTFriendly.hpp"

#line 1 "/home/zawatin/compro/ac-library/atcoder/modint.hpp"



#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "/home/zawatin/compro/ac-library/atcoder/internal_math.hpp"



#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "/home/zawatin/compro/ac-library/atcoder/internal_type_traits.hpp"



#line 7 "/home/zawatin/compro/ac-library/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "/home/zawatin/compro/ac-library/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 1 "/home/zawatin/compro/ac-library/atcoder/convolution.hpp"



#include <algorithm>
#include <array>
#line 8 "/home/zawatin/compro/ac-library/atcoder/convolution.hpp"
#include <vector>

#line 1 "/home/zawatin/compro/ac-library/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


#line 12 "/home/zawatin/compro/ac-library/atcoder/convolution.hpp"

namespace atcoder {

namespace internal {

template <class mint,
          int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
    static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
    std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
    std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1

    std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

    fft_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[countr_zero(~(unsigned int)(s))];
            }
            len++;
        } else {
            // 4-base
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i + offset].val();
                    auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[countr_zero(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)((unsigned int)(l.val() - r.val()) + mint::mod()) *
                        irot.val();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[countr_zero(~(unsigned int)(s))];
            }
            len--;
        } else {
            // 4-base
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].val();
                    auto a1 = 1ULL * a[i + offset + 1 * p].val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val();

                    auto a2na3iimag =
                        1ULL *
                        mint((mint::mod() + a2 - a3) * iimag.val()).val();

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
                        irot2.val();
                    a[i + offset + 3 * p] =
                        (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
                        irot3.val();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[countr_zero(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    std::vector<mint> ans(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    }
    return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(std::move(a), std::move(b));
    return internal::convolution_fft(std::move(a), std::move(b));
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(std::move(a2), std::move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
    static constexpr int MAX_AB_BIT = 24;
    static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
    static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
    static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
    assert(n + m - 1 <= (1 << MAX_AB_BIT));

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder


#line 8 "/home/zawatin/compro/cp-documentation/Src/FPS/FPSNTTFriendly.hpp"

#line 10 "/home/zawatin/compro/cp-documentation/Src/FPS/FPSNTTFriendly.hpp"
#include <iostream>
#include <ranges>
#line 14 "/home/zawatin/compro/cp-documentation/Src/FPS/FPSNTTFriendly.hpp"

namespace zawa {

template <usize MOD = 998244353>
struct FPSNTTFriendly : public std::vector<atcoder::static_modint<MOD>> {

    using std::vector<atcoder::static_modint<MOD>>::vector;

    using V = atcoder::static_modint<MOD>;

    FPSNTTFriendly(const std::vector<V>& f) {
        this->reserve(f.size());
        for (V v : f) this->push_back(std::move(v));
    }

    [[nodiscard]] FPSNTTFriendly<MOD> resized(usize n) const {
        auto cp = *this;
        cp.resize(n);
        return cp;
    }

    [[nodiscard]] FPSNTTFriendly<MOD> inv(usize n) const {
        assert(this->size() and (*this)[0] != V{0});
        FPSNTTFriendly<MOD> g{this->front().inv()};
        while (g.size() < n) {
            auto fgg = [&]() {
                auto res = g;
                FPSNTTFriendly<MOD> f(resized(g.size() << 1));
                const usize m = res.size(), k = f.size(), s = (m + m - 1) + k - 1;
                const usize z = atcoder::internal::bit_ceil(s);
                res.resize(z);
                f.resize(z);
                atcoder::internal::butterfly(res);
                atcoder::internal::butterfly(f);
                for (usize i = 0 ; i < z ; i++) res[i] *= res[i] * f[i];
                atcoder::internal::butterfly_inv(res);
                res.resize(k);
                res *= V{z}.inv();
                return res;
            }();
            // auto gg = atcoder::convolution(g, g);
            // std::vector<T> f(g.size() << 1);
            // for (usize i = 0 ; i < std::min(f.size(), F.size()) ; i++) f[i] = F[i];
            // auto fgg = atcoder::convolution(f, gg);
            g = V{2} * g - fgg;
        }
        g.resize(n);
        return g;
    }

    [[nodiscard]] FPSNTTFriendly<MOD> inv() const {
        return inv(this->size());
    }

    [[nodiscard]] FPSNTTFriendly<MOD> differential() const {
        if (this->empty()) return FPSNTTFriendly{};
        FPSNTTFriendly res(this->size() - 1);
        for (usize i = 1 ; i < this->size() ; i++) {
            res[i - 1] = (*this)[i] * V{i};
        }
        return res;
    }

    // C = 0
    [[nodiscard]] FPSNTTFriendly<MOD> integral() const {
        FPSNTTFriendly<MOD> res(this->size() + 1);
        for (usize i = 0 ; i < this->size() ; i++) {
            res[i + 1] = (*this)[i] / V{i + 1};
        }
        return res;
    }

    [[nodiscard]] FPSNTTFriendly<MOD> log(usize n) const {
        assert(this->size() and (*this)[0] == V{1});
        return FPSNTTFriendly<MOD>{differential() / (*this)}.resized(n - 1).integral();
    }

    [[nodiscard]] FPSNTTFriendly<MOD> log() const {
        return log(this->size()); 
    }

    [[nodiscard]] FPSNTTFriendly<MOD> exp(usize n) const {
        assert(this->size() and (*this)[0] == 0);    
        FPSNTTFriendly<MOD> g{V{1}};
        for (usize sz = 1 ; sz < n ; sz <<= 1) {
            auto f = -g.resized(sz << 1).log() + (*this).resized(sz << 1);
            f[0] += 1;
            g = g * f;
            g.resize(sz << 1);
        }
        g.resize(n);
        return g;
    }

    [[nodiscard]] FPSNTTFriendly<MOD> exp() const {
        return exp(this->size());
    }

    [[nodiscard]] FPSNTTFriendly<MOD> pow(u64 k, usize n) const {
        if (k == 0) return FPSNTTFriendly<MOD>{V{1}}.resized(n);
        auto it = std::ranges::find_if(*this, [&](const auto& v) { return v != V{0}; });
        if (it == this->end()) return FPSNTTFriendly<MOD>(n);
        auto sh = it - this->begin();
        if (sh and k > n / sh) return FPSNTTFriendly<MOD>(n);
        FPSNTTFriendly<MOD> f(this->size() - sh);
        const auto pv = it->pow(k);
        const auto iv = it->inv();
        for (usize i = 0 ; i < f.size() ; i++) f[i] = (*this)[sh + i] * iv;
        f = (f.log(n) * V{k}).exp(n);
        FPSNTTFriendly<MOD> res(n);
        for (usize i = 0 ; i + sh * k < n ; i++) res[i + sh * k] = f[i] * pv;
        return res;
    }

    [[nodiscard]] FPSNTTFriendly<MOD> pow(u64 k) const {
        return pow(k, this->size());
    }

    FPSNTTFriendly<MOD> operator+() const {
        return *this;
    }

    FPSNTTFriendly<MOD> operator-() const {
        FPSNTTFriendly<MOD> f = *this;
        for (usize i = 0 ; i < this->size() ; i++) f[i] *= V::raw(MOD - 1);
        return f;
    }

    FPSNTTFriendly<MOD>& operator+=(const FPSNTTFriendly<MOD>& f) {
        if (this->size() < f.size()) this->resize(f.size());
        for (usize i = 0 ; i < f.size() ; i++) (*this)[i] += f[i];
        return *this;
    }

    FPSNTTFriendly<MOD>& operator-=(const FPSNTTFriendly<MOD>& f) {
        if (this->size() < f.size()) this->resize(f.size());
        for (usize i = 0 ; i < f.size() ; i++) (*this)[i] -= f[i];
        return *this;
    }

    FPSNTTFriendly<MOD>& operator*=(const V& v) {
        for (usize i = 0 ; i < this->size() ; i++) (*this)[i] *= v;
        return *this;
    }

    friend FPSNTTFriendly<MOD> operator*(const FPSNTTFriendly<MOD>& l, const atcoder::static_modint<MOD>& r) {
        return FPSNTTFriendly<MOD>{l} *= r;
    }

    friend FPSNTTFriendly<MOD> operator*(const atcoder::static_modint<MOD>& l, const FPSNTTFriendly<MOD>& r) {
        return FPSNTTFriendly<MOD>{r} *= l;
    }

    FPSNTTFriendly<MOD>& operator*=(FPSNTTFriendly<MOD> f) {
        auto l = *this; 
        auto r = std::move(f);
        auto conved = atcoder::convolution(l, r);
        return *this = std::move(conved);
    }

    FPSNTTFriendly<MOD>& operator/=(const V& v) {
        return (*this) *= v.inv();
    }

    friend FPSNTTFriendly<MOD> operator/(const FPSNTTFriendly<MOD>& l, const atcoder::static_modint<MOD>& r) {
        return FPSNTTFriendly<MOD>{l} /= r;
    }

    FPSNTTFriendly<MOD>& operator/=(FPSNTTFriendly<MOD> f) {
        return (*this) *= f.inv();
    }
};

template <usize MOD = 998244353>
FPSNTTFriendly<MOD> operator+(const FPSNTTFriendly<MOD>& l, const FPSNTTFriendly<MOD>& r) {
    return FPSNTTFriendly<MOD>{l} += r;
}

template <usize MOD = 998244353>
FPSNTTFriendly<MOD> operator-(const FPSNTTFriendly<MOD>& l, const FPSNTTFriendly<MOD>& r) {
    return FPSNTTFriendly<MOD>{l} -= r;
}

template <usize MOD = 998244353>
FPSNTTFriendly<MOD> operator*(const FPSNTTFriendly<MOD>& l, const FPSNTTFriendly<MOD>& r) {
    return atcoder::convolution(l, r);
}

template <usize MOD = 998244353>
FPSNTTFriendly<MOD> operator/(const FPSNTTFriendly<MOD>& l, const FPSNTTFriendly<MOD>& r) {
    return FPSNTTFriendly<MOD>{atcoder::convolution(l, r.inv())};
}

template <usize MOD = 998244353>
std::ostream& operator<<(std::ostream& os, const FPSNTTFriendly<MOD>& f) {
    for (usize i = 0 ; i < f.size() ; i++) os << f[i].val() << (i + 1 == f.size() ? "" : " ");
    return os;
}

template <usize MOD = 998244353>
std::istream& operator>>(std::istream& is, FPSNTTFriendly<MOD>& f) {
    for (auto& v : f) {
        i64 x;
        is >> x;
        v = atcoder::static_modint<MOD>{x};
    }
    return is;
}

template <usize MOD = 998244353>
using FPS = FPSNTTFriendly<MOD>;

} // namespace zawa
#line 2 "/home/zawatin/compro/cp-documentation/Src/FPS/KthTerm.hpp"

#line 5 "/home/zawatin/compro/cp-documentation/Src/FPS/KthTerm.hpp"

#line 2 "/home/zawatin/compro/cp-documentation/Src/FPS/BostanMori.hpp"

#line 4 "/home/zawatin/compro/cp-documentation/Src/FPS/BostanMori.hpp"

namespace zawa {

template <concepts::IndexedFPS FPS, class Conv = FPSMult>
requires concepts::Convolution<FPS, Conv>
typename FPS::value_type BostanMori(usize N, FPS P, FPS Q, Conv conv = {}) {
    assert(P.size());
    assert(Q.size() and Q[0] != 0); 
    auto takeParity = [&](const FPS& f, usize p) {
        FPS res;
        res.reserve(f.size() / 2);
        for (usize i = p ; i < f.size() ; i += 2)
            res.push_back(f[i]);
        return res;
    };
    while (N) {
        FPS Qm(Q.size());
        for (usize i = 0 ; i < Q.size() ; i++)
            Qm[i] = i % 2 ? -Q[i] : Q[i];
        P = takeParity(conv(P, Qm), N % 2);
        Q = takeParity(conv(Q, Qm), 0);
        N >>= 1;
    }
    return P[0] / Q[0];
}

} // namespace zawa
#line 8 "/home/zawatin/compro/cp-documentation/Src/FPS/KthTerm.hpp"

namespace zawa {

template <concepts::IndexedFPS FPS, class Conv = FPSMult>
typename FPS::value_type KthTerm(u64 K, FPS A, FPS C, Conv conv = {}) {
    assert(C.size() >= 2 and C[0] == 0);
    assert(A.size() >= C.size() - 1);
    if (K < A.size()) 
        return A[K];
    for (auto& v : C)
        v = -v;
    C[0] = 1;
    FPS multed = conv(A, C);
    multed.resize(C.size() - 1);
    return BostanMori(K, multed, C, conv);
}

} // namespace zawa
#line 6 "3044.test.cpp"

/*
 * yukicoder No. 3044 繧医¥縺ゅk繧ォ繧ィ繝ォ縺輔s
 * https://yukicoder.me/submissions/1142529
 */

#line 14 "3044.test.cpp"

#line 16 "3044.test.cpp"
using namespace zawa;
using mint = atcoder::modint998244353;
using fps = FPSNTTFriendly<mint::mod()>;

void solve() {
    int N, T, k, l;
    std::cin >> N >> T >> k >> l;
    fps C(T + 1);
    C[1] = mint::raw(k - 1) / mint::raw(6);
    C[2] = mint::raw(l - k) / mint::raw(6);
    C[T] = mint::raw(7 - l) / mint::raw(6);
    fps A(T);
    A[0] = 1;
    for (int n = 1 ; n < T ; n++) {
        for (int j = 1 ; j <= T and n - j >= 0 ; j++) {
            A[n] += C[j] * A[n - j];
        }
    }
    std::cout << KthTerm(N - 1, A, C).val() << '\n';
}

int main() {
#ifdef ONLINE_JUDGE
    solve();
#else
    std::cout << "Hello World\n";
#endif
}
0