結果

問題 No.1907 DETERMINATION
コンテスト
ユーザー 37zigen
提出日時 2026-01-09 06:55:47
言語 Java
(openjdk 25.0.1)
結果
MLE  
実行時間 -
コード長 19,118 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,840 ms
コンパイル使用メモリ 106,348 KB
実行使用メモリ 729,600 KB
最終ジャッジ日時 2026-01-09 06:58:44
合計ジャッジ時間 18,290 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 21 WA * 3 TLE * 19 MLE * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.nio.file.Files;
import java.nio.file.OpenOption;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Optional;
import java.util.Queue;
import java.util.Random;
import java.util.Set;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntFunction;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.LongBinaryOperator;
import java.util.function.LongToDoubleFunction;
import java.util.function.Predicate;
import java.util.function.Supplier;
import java.util.function.ToIntFunction;
import java.util.random.RandomGenerator;
import java.util.stream.IntStream;
import java.util.stream.Stream;

class Matrix {
    /**
     * B = P⁻¹AP s.t. B[i][j] = 0 if i ≥ j + 2 となる B を返す。
     *
     * @param A
     * @param mod
     * @return  */
    public static long[][] hessenbergReductionOnFp(long[][] A, long mod) {
        /* 左から掛けたとき、i行目にj行目を足す行列 P がある。
        P = [1 1]
        [0 1] 
        それに対して P⁻¹ は右から掛けるとj列目にi列目が(-1)倍して足される。
        P = [1 -1]
        [0  1]

        左から掛けたとき、i行目とj行目をswapする行列 P がある。
        P = [0 1]
        [1 0] 
        それに対して P⁻¹ = Pは右から掛けるとi列目とi列目がswapされる。
        P = [0 1]
        [1 0]
         */
        long[][] B = ArrayUtils.copy(A);
        if (B.length != B[0].length) {
            throw new AssertionError();
        }
        int N = B.length;
        for (int i = 0; i < (N - 2); i++) {
            int p = i + 1;
            while ((p < N) && (B[p][i] == 0)) {
                ++p;
            } 
            if (p == N) {
                continue;
            }
            if ((i + 1) != p) {
                ArrayUtils.swap(B[i + 1], B[p]);
                ArrayUtils.swapColumns(i + 1, p, B);
            }
            // A[i+1][i] ≠ 0
            long inv = MathUtils.modInv(B[i + 1][i], mod);
            for (int j = i + 2; j < N; j++) {
                long c = (inv * B[j][i]) % mod;
                for (int k = 0; k < N; k++) {
                    B[j][k] = (B[j][k] + (B[i + 1][k] * (mod - c))) % mod;
                }
                for (int k = 0; k < N; k++) {
                    B[k][i + 1] = (B[k][i + 1] + (B[k][j] * c)) % mod;// i列目ではなく、i+1列目に足されるのでok

                }
            }
        }
        return B;
    }

    /**
     * det(Ix-A)
     *
     * @param A
     * @param mod
     * @return https://judge.yosupo.jp/submission/344336
     */
    public static long[] characteristicPolynomialOnFp(long[][] A, long mod) {
        if (A.length == 0) {
            return new long[]{ 1 };
        }
        if (A.length != A[0].length) {
            throw new AssertionError();
        }
        long[][] B = Matrix.hessenbergReductionOnFp(A, mod);
        int N = A.length;
        long[][] f = new long[N + 1][N + 1];
        for (int i = 0; i < f.length; i++) {
            f[i][i] = 1;
        }
        // f[i][j] = Π A[k+1][k] for i ≤ k < j
        for (int w = 1; w <= N; ++w) {
            for (int i = 0; ((i + w) <= N) && ((i + 1) < N); i++) {
                f[i][i + w] = (f[i + 1][i + w] * B[i + 1][i]) % mod;
            }
        }
        long[][] g = new long[N + 1][1];
        g[0] = new long[]{ 1 };
        // g[i] = B の 0,1,..,i-1 行目と 0,1,..,i-1 列目からなる部分行列の特性多項式
        for (int i = 0; i < N; i++) {
            g[i + 1] = PolynomialFp.add(g[i + 1], PolynomialFp.mul(g[i], new long[]{ mod - B[i][i], 1 }));
            for (int j = i + 1; j < N; j++) {
                long c = mod - ((f[i][j] * B[i][j]) % mod);
                g[j + 1] = PolynomialFp.add(g[j + 1], PolynomialFp.mul(g[i], c));
            }
        }
        return g[N];
    }
}

class FastScanner {
    private static FastScanner instance = null;

    private final InputStream in = System.in;

    private final byte[] buffer = new byte[1024];

    private int ptr = 0;

    private int buflen = 0;

    private FastScanner() {
    }

    public static FastScanner getInstance() {
        if (instance == null) {
            instance = new FastScanner();
        }
        return instance;
    }

    private boolean hasNextByte() {
        if (ptr < buflen) {
            return true;
        }
        ptr = 0;
        try {
            buflen = in.read(buffer);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return buflen > 0;
    }

    private int readByte() {
        if (hasNextByte()) {
            return buffer[ptr++];
        } else {
            return -1;
        }
    }

    private boolean isPrintableChar(int c) {
        return (33 <= c) && (c <= 126);
    }

    public boolean hasNext() {
        while (hasNextByte() && (!isPrintableChar(buffer[ptr]))) {
            ptr++;
        } 
        return hasNextByte();
    }

    public long nextLong() {
        if (!hasNext()) {
            throw new NoSuchElementException();
        }
        long n = 0;
        boolean minus = false;
        int b = readByte();
        if (b == '-') {
            minus = true;
            b = readByte();
        }
        while ((b >= '0') && (b <= '9')) {
            // n = n * 10 + (b - '0');
            n = ((n << 1) + (n << 3)) + (b - '0');
            b = readByte();
        } 
        return minus ? -n : n;
    }

    public int nextInt() {
        return ((int) (nextLong()));
    }

    public long[][] nextLongs(int H, int W) {
        long[][] a = new long[H][W];
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) {
                a[i][j] = nextLong();
            }
        }
        return a;
    }
}

class MergeFiles {}

class PolynomialFp {
    public static final long mod = 998244353;// 119×2^{23}+1


    static long[][] bitreversedRoots = new long[30][];

    static long[][] bitreversedInvRoots = new long[30][];

    static long ADD(long a, long b) {
        long sum = a + b;
        return sum >= mod ? sum - mod : sum;
    }

    static long SUB(long a, long b) {
        return ADD(a, mod - b);
    }

    static void prepareRoots(int n) {
        int sz = Integer.numberOfTrailingZeros(n);
        if (bitreversedRoots[sz] != null) {
            return;
        }
        long g = 3;
        long root = MathUtils.modPow(g, (mod - 1) / n, mod);
        long iroot = MathUtils.modInv(root, mod);
        bitreversedRoots[sz] = new long[n];
        bitreversedInvRoots[sz] = new long[n];
        for (int n_ = n / 2; n_ >= 1; n_ /= 2 , root = (root * root) % mod , iroot = (iroot * iroot) % mod) {
            long w = 1;
            long iw = 1;
            for (int j = 0; j < n_; ++j) {
                bitreversedRoots[sz][n_ + j] = w;
                bitreversedInvRoots[sz][n_ + j] = iw;
                w = (w * root) % mod;
                iw = (iw * iroot) % mod;
            }
            int cur = 0;
            for (int j = 0; j < n_; ++j) {
                if (cur < j) {
                    ArrayUtils.swap(n_ + cur, n_ + j, bitreversedRoots[sz]);
                    ArrayUtils.swap(n_ + cur, n_ + j, bitreversedInvRoots[sz]);
                }
                for (int k = n_ / 2; k > (cur ^= k); k /= 2);
            }
        }
    }

    /**
     * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017.
     *
     * @param a
     */
    public static void fftTobitReversed(long[] a) {
        int n = a.length;
        int sz = Integer.numberOfTrailingZeros(a.length);
        if (bitreversedRoots[sz] == null) {
            prepareRoots(a.length);
        }
        for (int m = 1, t = n / 2; m <= (n / 2); m *= 2 , t /= 2) {
            for (int i = 0, k = 0; i < m; ++i , k += 2 * t) {
                long S = bitreversedRoots[sz][m + i];
                for (int j = k; j < (k + t); ++j) {
                    long u = a[j];
                    long v = (a[j + t] * S) % mod;
                    a[j] = ADD(u, v);
                    a[j + t] = SUB(u, v);
                }
            }
        }
    }

    /**
     * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017.
     *
     * @param a
     */
    public static void ifftFromBitreversed(long[] a) {
        long invN = MathUtils.modInv(a.length, mod);
        int n = a.length;
        int sz = Integer.numberOfTrailingZeros(n);
        if (bitreversedInvRoots[sz] == null) {
            prepareRoots(a.length);
        }
        for (int m = n / 2, t = 1; m >= 1; m /= 2 , t *= 2) {
            for (int i = 0, k = 0; i < m; ++i , k += 2 * t) {
                long S = bitreversedInvRoots[sz][m + i];
                if (m == 1) {
                    S = (S * invN) % mod;
                }
                for (int j = k; j < (k + t); ++j) {
                    long u = a[j];
                    long v = a[j + t];
                    if (m == 1) {
                        a[j] = ((u + v) * invN) % mod;
                    } else {
                        a[j] = ADD(u, v);
                    }
                    a[j + t] = (((u + mod) - v) * S) % mod;
                }
            }
        }
    }

    public static long[] add(long[] a, long[] b) {
        long[] ret = new long[Math.max(a.length, b.length)];
        for (int i = 0; i < ret.length; ++i) {
            ret[i] = ADD(i < a.length ? a[i] : 0, i < b.length ? b[i] : 0);
        }
        return ret;
    }

    static long[] mulFFT(long[] a, long[] b) {
        int n = 1;
        int len = (a.length + b.length) - 1;
        while (n < ((a.length + b.length) - 1)) {
            n *= 2;
        } 
        a = Arrays.copyOf(a, n);
        b = Arrays.copyOf(b, n);
        prepareRoots(n);
        fftTobitReversed(a);
        fftTobitReversed(b);
        for (int i = 0; i < a.length; ++i) {
            a[i] = (a[i] * b[i]) % mod;
        }
        ifftFromBitreversed(a);
        return resize(a, len);
    }

    public static long[] mulNaive(long[] a, long[] b) {
        long[] ret = new long[(a.length + b.length) - 1];
        for (int i = 0; i < a.length; ++i) {
            for (int j = 0; j < b.length; ++j) {
                ret[i + j] += a[i] * b[j];
                ret[i + j] %= mod;
            }
        }
        return ret;
    }

    /**
     * [-mod+1, mod-1]の範囲外の要素があると、ADD/SUBでバグる。
     *
     * @param a
     * @param b
     * @return  */
    public static long[] mul(long[] a, long[] b) {
        for (int i = 0; i < a.length; i++) {
            if (a[i] < 0) {
                a[i] += mod;
            }
        }
        for (int i = 0; i < b.length; i++) {
            if (b[i] < 0) {
                b[i] += mod;
            }
        }
        if ((((a.length + b.length) - 1) <= 512) || (Math.min(a.length, b.length) <= 10)) {
            return mulNaive(a, b);
        } else {
            return mulFFT(a, b);
        }
    }

    public static long[] mul(long[] a, long b) {
        long[] ret = new long[a.length];
        for (int i = 0; i < a.length; ++i) {
            ret[i] = (a[i] * b) % mod;
        }
        return ret;
    }

    static long[] resize(long[] a, int len) {
        return Arrays.copyOf(a, len);
    }
}

class ArrayUtils {
    public static void swap(int i, int j, long[] A) {
        if (i == j) {
            return;
        }
        long tmp = A[i];
        A[i] = A[j];
        A[j] = tmp;
    }

    public static void swap(long[] A, long[] B) {
        if (A.length != B.length) {
            throw new AssertionError();
        }
        for (int i = 0; i < A.length; i++) {
            long tmp = A[i];
            A[i] = B[i];
            B[i] = tmp;
        }
    }

    public static void swapColumns(int i, int j, long[][] a) {
        if (i == j) {
            return;
        }
        for (int k = 0; k < a.length; k++) {
            var tmp = a[k][i];
            a[k][i] = a[k][j];
            a[k][j] = tmp;
        }
    }

    public static long[][] copy(long[][] a) {
        long[][] b = new long[a.length][];
        Arrays.setAll(b, i -> Arrays.copyOf(a[i], a[i].length));
        return b;
    }

    public static long[] modMul(long[] a, long scalar, long mod) {
        long[] b = new long[a.length];
        for (int i = 0; i < a.length; ++i) {
            b[i] = (a[i] * scalar) % mod;
        }
        return b;
    }

    public static long[] modSub(long[] a, long[] b, long mod) {
        if (a.length != b.length) {
            throw new AssertionError();
        }
        long[] c = new long[a.length];
        for (int i = 0; i < a.length; ++i) {
            c[i] = a[i] - b[i];
            if (c[i] < 0) {
                c[i] += mod;
            }
        }
        return c;
    }
}

class MyPrintWriter extends PrintWriter {
    private static MyPrintWriter instance = null;

    private MyPrintWriter() {
        super(System.out);
    }

    public static MyPrintWriter getInstance() {
        if (instance == null) {
            instance = new MyPrintWriter();
        }
        return instance;
    }

    public void println(long[] a, String separator) {
        for (int i = 0; i < a.length; ++i) {
            super.print(a[i] + (i == (a.length - 1) ? "\n" : separator));
        }
    }
}

class MathUtils {
    public static long modPow(long a, long n, long mod) {
        if (n < 0) {
            long inv = MathUtils.modInv(a, mod);
            return MathUtils.modPow(inv, -n, mod);
        }
        if (n == 0) {
            return 1;
        }
        return (MathUtils.modPow((a * a) % mod, n / 2, mod) * ((n % 2) == 1 ? a : 1)) % mod;
    }

    /**
     * 拡張ユークリッドの互除法で逆元を求める。
     *
     * @param a
     * @param mod
     * @return  */
    public static long modInv(long a, long mod) {
        a = ((a % mod) + mod) % mod;
        long[] f0 = new long[]{ 1, 0, mod };
        long[] f1 = new long[]{ 0, 1, a };
        while (f1[2] != 0) {
            long q = f0[2] / f1[2];
            for (int i = 0; i < 3; i++) {
                f0[i] -= q * f1[i];
            }
            ArrayUtils.swap(f0, f1);
        } 
        return f0[1] < 0 ? mod + f0[1] : f0[1];
    }
}

public class Main implements Runnable {
    public static void main(String[] args) throws IOException {
        Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1));
        // new Main().gen();
        // Runtime runtime = Runtime.getRuntime();
        // new Thread(null, new Main(), "MainThreadWithLargeStack", (1024 * 1024) * 1024).run();
        // new Main().test();
        // new Main().gen();
        new Main().run();
        // new Main().solve();
        // long usedMemory = runtime.totalMemory() - runtime.freeMemory();
        // System.err.printf("使用メモリ: %.2f MB%n", usedMemory / 1024.0 / 1024.0);
        MyPrintWriter.getInstance().flush();
    }

    final long mod = 998244353;

    @Override
    public void run() {
        FastScanner sc = FastScanner.getInstance();
        MyPrintWriter pw = MyPrintWriter.getInstance();
        int N = sc.nextInt();
        long[][] A = sc.nextLongs(N, N);
        long[][] B = sc.nextLongs(N, N);
        long[] ans = f(B, A);
        ans = Arrays.copyOf(ans, N + 1);
        pw.println(ans, "\n");
    }

    /**
     * det(Ax+B)
     *
     * @param A
     * @param B
     * @return  */
    long[] f(long[][] A, long[][] B) {
        MyPrintWriter pw = MyPrintWriter.getInstance();
        int N = A.length;
        long[][] C = new long[N][2 * N];
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                C[i][j] = A[i][j];
                C[i][j + N] = B[i][j];
            }
        }
        long d = 1;
        int offset = 0;
        for (int i = 0; i < N; ++i) {
            {
                int j = i;
                while ((j < C.length) && (C[j][i] == 0)) {
                    ++j;
                } 
                if (j == C.length) {
                    for (int k = 0; k < i; k++) {
                        if (C[k][i] == 0) {
                            continue;
                        }
                        long c = mod - C[k][i];
                        for (int l = 0; l < N; l++) {
                            C[l][i] = (C[l][i] + (c * C[l][k])) % mod;
                            C[l][i + N] = (C[l][i + N] + (c * C[l][k + N])) % mod;
                        }
                    }
                    ArrayUtils.swapColumns(i, i + N, C);
                    offset++;
                    j = i;
                    while ((j < C.length) && (C[j][i] == 0)) {
                        ++j;
                    } 
                }
                if (j == C.length) {
                    return new long[]{ 0 };
                }
                if (i != j) {
                    d = mod - d;
                    ArrayUtils.swap(C[i], C[j]);
                }
            }
            d = (d * C[i][i]) % mod;
            C[i] = ArrayUtils.modMul(C[i], MathUtils.modInv(C[i][i], mod), mod);
            for (int j = 0; j < C.length; ++j) {
                if (i == j) {
                    continue;
                }
                C[j] = ArrayUtils.modSub(C[j], ArrayUtils.modMul(C[i], C[j][i], mod), mod);
            }
        }
        for (int i = 0; i < N; i++) {
            C[i] = Arrays.copyOfRange(C[i], N, 2 * N);
        }
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                if (C[i][j] != 0) {
                    C[i][j] = mod - C[i][j];
                }
            }
        }
        long[] ret = Matrix.characteristicPolynomialOnFp(C, mod);
        for (int i = 0; i < ret.length; i++) {
            ret[i] = (d * ret[i]) % mod;
        }
        return Arrays.copyOfRange(ret, offset, ret.length);
    }
}

0