結果

問題 No.3399 One Two Three Two Three
コンテスト
ユーザー lishujia090623
提出日時 2026-01-11 00:01:53
言語 C++17
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 3,138 ms / 4,000 ms
コード長 5,243 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,552 ms
コンパイル使用メモリ 249,156 KB
実行使用メモリ 90,912 KB
最終ジャッジ日時 2026-01-11 00:02:37
合計ジャッジ時間 43,519 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include<bits/stdc++.h>
#define int long long
#define poly basic_string<int>
using namespace std;
const int N=65,M=1e5+5,Mod=998244353,INV2=499122177;
int n,p1,p2,p3,p4,p5,pw2[N],pw3[N],g,invg,w2,w3,ans,a[M],b[M],c[M];
poly P[N][N],Q[N][N],R[N][N],S[N],T[N],F[N],G[N],H[N],W0[N],W1[N],now={{1,0}};
int ksm(int x,int y)
{
	int ret=1,bace=x;
	while(y)
	{
		if(y&1)ret=ret*bace%Mod;
		bace=bace*bace%Mod;
		y>>=1;
	}
	return ret;
}
namespace NTT 
{ 
 	typedef long long LL;
typedef vector<int> PN;

const int maxn=1000000,maxt=1<<21,MOD=998244353;

int te,Q,A,B,P,a[maxn+5];
int pw[maxn+5],INV[maxn+5],fac[maxn+5];
int wn[maxt+5],temA[maxt+5],temB[maxt+5];

inline int ADD(int x,int y) {return x+y>=MOD?x+y-MOD:x+y;}
inline int MUL(int x,int y) {return (LL)x*y%MOD;}
int Pow(int w,int b) {int s;for (s=1;b;b>>=1,w=MUL(w,w)) if (b&1) s=MUL(s,w);return s;}
__attribute__((constructor)) void NTTPre(){
    int x=Pow(3,(MOD-1)/maxt);
    wn[maxt>>1]=1;
    for (int i=(maxt>>1)+1;i<maxt;i++) wn[i]=MUL(wn[i-1],x);
    for (int i=(maxt>>1)-1;i;i--) wn[i]=wn[i<<1];
}
void NTT(int *a,int n,int f){
    if (f>0){
        for (int k=n>>1;k;k>>=1)
            for (int i=0;i<n;i+=k<<1)
                for (int j=0;j<k;j++){
                    int x=a[i+j],y=a[i+j+k];
                    a[i+j+k]=MUL(x+MOD-y,wn[k+j]);
                    a[i+j]=ADD(x,y);
                }
    } else {
        for (int k=1;k<n;k<<=1)
            for (int i=0;i<n;i+=k<<1)
                for (int j=0;j<k;j++){
                    int x=a[i+j],y=MUL(a[i+j+k],wn[k+j]);
                    a[i+j+k]=ADD(x,MOD-y);
                    a[i+j]=ADD(x,y);
                }
        for (int i=0,INV=MOD-(MOD-1)/n;i<n;i++) a[i]=MUL(a[i],INV);
        reverse(a+1,a+n);
    }
}
void Make(int n){
    INV[0]=INV[1]=1;for (int i=2;i<=n;i++) INV[i]=MUL(MOD-MOD/i,INV[MOD%i]);
    fac[0]=1;for (int i=1;i<=n;i++) fac[i]=MUL(fac[i-1],i),INV[i]=MUL(INV[i-1],INV[i]);
}
inline PN operator + (const PN &a,const PN &b){
    static PN c;c.resize(max(a.size(),b.size()));
    for (int i=0;i<c.size();i++) c[i]=ADD(i<a.size()?a[i]:0,i<b.size()?b[i]:0);
    return c;
}
inline PN operator - (const PN &a,const PN &b){
    static PN c;c.resize(max(a.size(),b.size()));
    for (int i=0;i<c.size();i++) c[i]=ADD(i<a.size()?a[i]:0,i<b.size()?MOD-b[i]:0);
    return c;
}
PN operator * (const PN &a,const PN &b){
    static PN c;
    int n=a.size(),m=b.size(),t;
    for (t=1;t<n+m-1;t<<=1);
    for (int i=0;i<n;i++) temA[i]=a[i];for (int i=n;i<t;i++) temA[i]=0;
    for (int i=0;i<m;i++) temB[i]=b[i];for (int i=m;i<t;i++) temB[i]=0;
    NTT(temA,t,1);NTT(temB,t,1);
    for (int i=0;i<t;i++) temA[i]=MUL(temA[i],temB[i]);
    NTT(temA,t,-1);
    c.resize(n+m-1);for (int i=0;i<n+m-1;i++) c[i]=temA[i];
    return c;
}
poly solve(poly f,poly g)
{
	PN a,b,c;
	poly h;
	for(auto x:f)a.push_back(x);
	for(auto x:g)b.push_back(x);
	c=a*b;
	for(auto x:c)h+=x;
	return h;
}
}
poly operator*(poly f,poly g)
{
	if(!f.size()||!g.size())return {0};
	poly h;
	if(f.size()<30&&g.size()<30)
	{
		h.resize(f.size()+g.size()-1);
		for(int i=0;i<f.size();i++)for(int j=0;j<g.size();j++)h[i+j]=(h[i+j]+f[i]*g[j])%Mod;
		return h;
	}
	return NTT::solve(f,g);
}
poly operator+(poly f,poly g)
{
	if(f.size()<g.size())swap(f,g);
	for(int i=0;i<g.size();i++)f[i]+=g[i],f[i]%=Mod;
	return f;
}
poly operator-(poly f,poly g)
{
	if(f.size()<g.size())f.resize(g.size());
	for(int i=0;i<g.size();i++)f[i]=(f[i]-g[i]+Mod)%Mod;
	return f;
}
poly calc(poly f,int k,int b)
{
	poly g;
	for(int i=b;i<f.size();i+=k)g+=f[i];
	return g;
}
poly calc1(poly f,int k,int b)
{
	poly g;
	g.resize(f.size());
	for(int i=0;i<f.size();i++)if(i%k==b)g[(i-b)/k*k]=f[i];
	return g;
}
poly calc2(poly F)
{
	poly A0=calc(F,2,0),A1=calc(F,2,1);
	return A0*A0-(poly){0,1}*A1*A1;
}
poly calc3(poly F)
{
	poly A0=calc(F,3,0),A1=calc(F,3,1),A2=calc(F,3,2);
	return A0*A0*A0+(poly){0,1}*A1*A1*A1+(poly){0,0,1}*A2*A2*A2-(poly){0,3}*A0*A1*A2;
}
poly s;
signed main()
{
	g=3,invg=ksm(g,Mod-2);
	scanf("%lld",&n);
	p1=p2=p3=p4=p5=1;
	s+=1;
	if(p1)s+=Mod-1;
	if(p2)s+=Mod-1;
	if(p3)s+=Mod-1;
	Q[0][0]=s,F[0]=G[0]=S[0]=P[0][0]={1},pw2[0]=pw3[0]=1;
	for(int i=0;i<=60;i++)S[i]={1};
	for(int i=1;i<=60;i++)pw2[i]=2*pw2[i-1],pw3[i]=3*pw3[i-1];
	for(int i=0;i<=60;i++)
		for(int j=0;j<=60;j++)
		{
			Q[i+1][j]=calc2(Q[i][j]);
			Q[i][j+1]=calc3(Q[i][j]);
			S[i+j]=S[i+j]*Q[i][j];
		}
	H[0]=s;
	for(int i=1;i<=60;i++)S[i]=S[i]*S[i-1],F[i]=F[i-1]*Q[0][i],G[i]=G[i-1]*Q[i][0],H[i]=H[i-1]*Q[0][i];
	for(int i=0;i<=60;i++)
	{
		W0[i]=S[i];
		for(int j=1;j<W0[i].size();j+=2)W0[i][j]=Mod-W0[i][j];
		poly A=calc1(S[i],3,0),B=calc1(S[i],3,1),C=calc1(S[i],3,2);
		W1[i]=A*A-(poly){0,1}*A*B+(poly){0,0,1}*(B*B-A*C)-(poly){0,0,0,1}*B*C+(poly){0,0,0,0,1}*C*C;
		while(!W1[i].back())W1[i].pop_back();
	}
	for(int i=0;i<=60;i++)
		for(int j=0;j<=38&&i+j<=60;j++)
		{
			int tmp=n/pw2[i]/pw3[j];
			if(!tmp)
			{
				if(R[i][j].size())ans+=R[i][j][0]*ksm(S[i+j][0],Mod-2),ans%=Mod;
				continue;
			}
			poly ww=P[i][j]*W0[i+j];
			if(p4)P[i+1][j]=P[i+1][j]+calc(ww,2,tmp&1)*F[i+j+1];
			if(p5)P[i][j+1]=P[i][j+1]+calc(P[i][j]*W1[i+j],3,tmp%3)*G[i+j+1];
			R[i+1][j]=R[i+1][j]+calc(R[i][j]*W0[i+j]+(poly){0,1}*ww,2,tmp&1)*H[i+j+1];
		}
	printf("%lld",ans);
	return 0;
}
0