結果

問題 No.3432 popcount & sum (Hard)
コンテスト
ユーザー Rubikun
提出日時 2026-01-11 14:03:18
言語 C++17
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 24 ms / 2,000 ms
コード長 38,622 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 6,601 ms
コンパイル使用メモリ 315,968 KB
実行使用メモリ 15,956 KB
最終ジャッジ日時 2026-01-11 14:03:29
合計ジャッジ時間 7,648 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=15<<26;

// FPS 全部載せ

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder



#include <utility>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;
    
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    
    unsigned int umod() const { return _m; }
    
    unsigned int mul(unsigned int a, unsigned int b) const {
        
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
        
        
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;

template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
                           std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;
    
public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    
    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
    
    unsigned int val() const { return _v; }
    
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    
private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;
    
public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    
    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
    
    unsigned int val() const { return _v; }
    
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    
private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);
    
    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);
    
    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }
    
    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                (unsigned long long)(mint::mod() + l.val() - r.val()) *
                inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    
    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    
    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
    
    static constexpr unsigned long long i1 =
    internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
    internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
    internal::inv_gcd(MOD1 * MOD2, MOD3).second;
    
    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);
    
    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        long long diff =
        c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }
    
    return c;
}

}  // namespace atcoder

using mint=atcoder::modint998244353;

vector<mint> prebat(vector<mint> S,int szsum){
    int z = 1 << atcoder::internal::ceil_pow2(szsum-1);
    auto res=S;
    res.resize(z);
    atcoder::internal::butterfly(res);
    return res;
}
// szsum = aの配列の長さ + bの配列の長さ

vector<mint> sufbat(vector<mint> S,int szsum){
    int z = 1 << atcoder::internal::ceil_pow2(szsum-1);
    auto res=S;
    atcoder::internal::butterfly_inv(res);
    res.resize(szsum-1);
    mint iz = mint(z).inv();
    for (int i = 0; i < szsum - 1; i++) res[i] *= iz;
    return res;
}
// szsum = aの配列の長さ + bの配列の長さ

vector<mint> inv,fac,finv;

void make(){
    
    inv.resize(MAX);
    fac.resize(MAX);
    finv.resize(MAX);
    fac[0]=fac[1]=1;
    finv[0]=finv[1]=1;
    inv[1]=1;
    
    for(int i=2;i<MAX;i++){
        inv[i]=-inv[mod%i]*(mod/i);
        fac[i]=fac[i-1]*i;
        finv[i]=finv[i-1]*inv[i];
    }
}

mint comb(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[b]*finv[a-b];
}

mint perm(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[a-b];
}

vector<mint> bibun(vector<mint> F,int deg){
    vector<mint> res(deg+1);
    for(int i=1;i<si(F)&&i-1<=deg;i++){
        res[i-1]=F[i]*i;
    }
    
    return res;
}

vector<mint> sekibun(vector<mint> F,int deg){
    vector<mint> res(deg+1);
    for(int i=0;i<min(si(F),deg);i++){
        res[i+1]=F[i]*inv[i+1];
    }
    
    return res;
}

vector<mint> invv(vector<mint> F,int deg){
    assert(F[0]!=0);
    
    mint kake=mint(F[0]).inv();
    for(int i=0;i<si(F);i++){
        F[i]*=kake;
    }
    vector<mint> G(1,1);
    int len=1;
    while(len<=deg){
        vector<mint> f=F;f.resize(len*2);
        vector<mint> g=G;g.resize(len*2);
        
        atcoder::internal::butterfly(f);
        atcoder::internal::butterfly(g);
        
        for(int i=0;i<len*2;i++) f[i]*=g[i];
        
        atcoder::internal::butterfly_inv(f);
        vector<mint> nf(len*2);
        for(int i=len;i<2*len;i++) nf[i-len]=f[i];
        
        f=nf;
        atcoder::internal::butterfly(f);
        
        for(int i=0;i<len*2;i++) f[i]*=g[i];
        
        atcoder::internal::butterfly_inv(f);
        
        mint iz=mint(len*2).inv();
        mint coe=-iz*iz;
        
        G.resize(len*2);
        
        for(int i=0;i<len;i++) G[len+i]=f[i]*coe;
        
        len*=2;
    }
    
    G.resize(deg+1);
    for(int i=0;i<=deg;i++) G[i]*=kake;
    
    return G;
}//1/Tのdeg次以下を返す

vector<mint> logg(vector<mint> F,int deg){
    assert(F[0]==1);
    
    vector<mint> FF=bibun(F,deg);
    vector<mint> waru=invv(F,deg);
    
    vector<mint> G=atcoder::convolution(FF,waru);
    
    G=sekibun(G,deg);
    
    return G;
}
// F0 = 1

vector<mint> expp(vector<mint> F,int deg){
    if(si(F)){
        assert(F[0]==0);
    }
    
    vector<mint> G(1,1);
    int len=1;
    while(len<=deg){
        vector<mint> nex=logg(G,len*2-1);
        for(int i=0;i<si(nex);i++) nex[i]*=(-1);
        for(int i=0;i<si(nex);i++){
            if(i<si(F)) nex[i]+=F[i];
        }
        nex[0]++;
        nex=atcoder::convolution(nex,G);
        nex.resize(len*2);
        
        len*=2;
        G=nex;
    }
    
    G.resize(deg+1);
    
    return G;
}
// F0 = 0

vector<mint> poww(vector<mint> F,int deg,ll K){
    if(K==0){
        vector<mint> res(deg+1);
        res[0]=1;
        return res;
    }
    if(si(F)==0){
        vector<mint> res(deg+1);
        return res;
    }
    
    ll geta=-1;
    mint kake=0;
    for(int i=0;i<si(F);i++){
        if(F[i]!=0){
            geta=i;
            kake=F[i].inv();
            break;
        }
    }
    
    if(geta==-1){
        vector<mint> res(deg+1);
        return res;
    }
    
    if(geta>1000000000LL/K){
        vector<mint> res(deg+1);
        return res;
    }
    if(geta*K>deg){
        vector<mint> res(deg+1);
        return res;
    }
    
    vector<mint> nF(si(F)-geta);
    for(int i=geta;i<si(F);i++){
        nF[i-geta]=(F[i]*kake);
    }
    
    F=nF;
    
    vector<mint> FF=logg(nF,deg-geta*K);
    for(int i=0;i<si(FF);i++) FF[i]*=K;
    
    vector<mint> G=expp(FF,deg-geta*K);
    
    kake=kake.inv();
    kake=kake.pow(K);
    
    vector<mint> res(deg+1);
    for(int i=0;i<si(G);i++){
        res[geta*K+i]=G[i]*kake;
    }
    
    return res;
}

vector<mint> sqrtt(vector<mint> F,int deg){
    assert(F[0]==1);
    // 本当はmod_sqrt必要そう
    
    int len=1;
    vector<mint> res={1};
    
    mint r2=mint(2).inv();
    
    while(len<=deg){
        vector<mint> nex(len+len);
        
        for(int i=0;i<len;i++) nex[i]+=res[i];
        
        res=invv(res,len+len);
        
        vector<mint> kake(len+len);
        for(int i=0;i<min(len+len,si(F));i++) kake[i]=F[i];
        res=atcoder::convolution(res,kake);
        
        for(int i=0;i<min(si(res),len+len);i++) nex[i]+=res[i];
        
        for(int i=0;i<len+len;i++){
            nex[i]*=r2;
        }
        
        res=nex;
        len*=2;
    }
    
    res.resize(deg+1);
    return res;
}

mint senkeizenka(vector<mint> A,vector<mint> C,ll K){
    if(K<si(A)) return A[K];
    
    int D=si(A);
    assert(si(A)==si(C));
    vector<mint> Q(D+1);
    Q[0]=1;
    for(int i=1;i<=D;i++) Q[i]=-C[i-1];
    
    auto P=atcoder::convolution(A,Q);
    P.resize(D);
    
    while(K){
        auto Qneg=Q;
        for(int i=1;i<si(Qneg);i+=2) Qneg[i]=-Qneg[i];
        auto x=atcoder::convolution(P,Qneg);
        auto y=atcoder::convolution(Q,Qneg);
        
        P.clear();
        Q.clear();
        for(int i=(K&1);i<si(x);i+=2) P.push_back(x[i]);
        for(int i=0;i<si(y);i+=2) Q.push_back(y[i]);
        K/=2;
    }
    
    if(si(P)==0) return 0;
    // たぶん
    
    return P[0]/Q[0];
}
//a[0],...,a[d-1]
//c[1],...,c[d]

mint senkeizenka2(vector<mint> P,vector<mint> Q,ll K){
    
    while(K){
        auto Qneg=Q;
        for(int i=1;i<si(Qneg);i+=2) Qneg[i]=-Qneg[i];
        auto x=atcoder::convolution(P,Qneg);
        auto y=atcoder::convolution(Q,Qneg);
        
        P.clear();
        Q.clear();
        for(int i=(K&1);i<si(x);i+=2) P.push_back(x[i]);
        for(int i=0;i<si(y);i+=2) Q.push_back(y[i]);
        K/=2;
    }
    
    return P[0]/Q[0];
}
// P/Q

// memo : 1->2 P=a(1-c)の前sz(a)項(重要), Q=1-c
// memo : 2->1 P*inv(Q) のはず
// make() を呼ばないとsekibun呼ぶやつで一部バグる
// MAX=2*deg ぐらい必要な気がする

pair<vector<mint>,vector<mint>> warizan(vector<mint> P,vector<mint> Q){
    if(si(P)<si(Q)) return mp(vector<mint>{},P);
    
    auto revP=P;reverse(all(revP));
    auto revQ=Q;reverse(all(revQ));
    revQ=invv(revQ,si(P)-si(Q));
    auto shou=atcoder::convolution(revP,revQ);
    shou.resize(si(P)-si(Q)+1);
    reverse(all(shou));
    
    auto hiku=atcoder::convolution(Q,shou);
    
    vector<mint> amari(si(P));
    for(int i=0;i<si(P);i++){
        amari[i]=P[i]-hiku[i];
    }
    while(si(shou)&&shou.back()==0) shou.pop_back();
    while(si(amari)&&amari.back()==0) amari.pop_back();
    return mp(shou,amari);
}
// 最高位が0でないようにしている(0のときは空)
// 多項式での除算

vector<mint> multieval(vector<mint> P,vector<mint> que){
    if(si(que)==0) return {};
    int N=si(que),n=1;
    while(n<N) n*=2;
    que.resize(n);
    
    vector<vector<mint>> Atree(n+n-1),Btree(n+n-1);
    for(int i=0;i<n;i++) Atree[n-1+i]={-que[i],1};
    for(int i=n-2;i>=0;i--){
        Atree[i]=atcoder::convolution(Atree[2*i+1],Atree[2*i+2]);
    }
    
    Btree[0]=warizan(P,Atree[0]).se;
    for(int i=1;i<n+n-1;i++){
        Btree[i]=warizan(Btree[(i-1)/2],Atree[i]).se;
    }
    
    vector<mint> res(N,0);
    for(int i=0;i<N;i++){
        if(si(Btree[n-1+i])) res[i]=Btree[n-1+i][0];
    }
    
    return res;
}

vector<mint> multieval_touhi(vector<mint> P,mint w,int M){
    if(M==0) return {};
    
    int N=si(P);
    
    if(N==0) return vector<mint>(M,0);
    
    if(w==0){
        vector<mint> res(M,P[0]);
        res[0]=0;
        for(int i=0;i<N;i++) res[0]+=P[i];
        return res;
    }
    
    vector<mint> y(N),v(N+M-1);
    for(ll i=0;i<N;i++) y[i]=P[i]/w.pow(i*(i-1)/2);
    for(ll i=0;i<N+M-1;i++) v[i]=w.pow(i*(i-1)/2);
    
    reverse(all(y));
    
    auto z=atcoder::convolution(y,v);
    
    vector<mint> res(M);
    
    for(ll i=0;i<M;i++){
        res[i]=z[N-1+i]/w.pow(i*(i-1)/2);
    }
    
    return res;
}
// w^0,...,w^(M-1)まで答える
// 0^0=1

vector<mint> Bernoulli(int N){
    vector<mint> F(N+1);
    for(int i=0;i<=N;i++) F[i]=finv[i+1];
    F=invv(F,N);
    
    for(int i=0;i<=N;i++){
        F[i]*=fac[i];
    }
    
    if(N>=1) F[1]*=-1;
    // べき乗和欲しいときはB+に
    
    return F;
}

vector<mint> Taylor_Shift(vector<mint> F,ll c){
    int N=si(F);
    vector<mint> A(N),B(N);
    for(int i=0;i<N;i++){
        A[i]=F[N-1-i]*fac[N-1-i];
        B[i]=finv[i]*mint(c).pow(i);
    }
    
    vector<mint> p=atcoder::convolution(A,B);
    
    for(int i=0;i<N;i++) p[i]*=finv[N-1-i];
    
    vector<mint> res(N);
    
    for(int i=0;i<N;i++) res[i]=p[N-1-i];
    
    return res;
}

vector<mint> manyproduct(vector<vector<mint>> S){
    if(si(S)==0) return {1};
    deque<vector<mint>> deq;
    for(auto a:S) deq.push_back(a);
    while(si(deq)>1){
        auto a=deq.front();deq.pop_front();
        auto b=deq.front();deq.pop_front();
        deq.push_back(atcoder::convolution(a,b));
    }
    return deq[0];
}

vector<mint> PrefixSum(vector<mint> p){
    int N=si(p);
    vector<mint> f(N);
    for(int i=1;i<N;i++) f[i]=p[i]*fac[i];
    
    vector<mint> Be=Bernoulli(N);
    if(si(Be)>1) Be[1]=-Be[1];
    
    vector<mint> g(N);
    for(int j=0;j<N;j++) g[j]=Be[j]*finv[j];
    reverse(all(g));
    
    auto h=atcoder::convolution(f,g);
    
    vector<mint> res(N+1);
    for(int i=1;i<=N;i++){
        res[i]=h[N-2+i]*finv[i];
    }
    
    res[0]+=p[0];
    res[1]+=p[0];
    
    return res;
}

vector<mint> BerlekampMassey(vector<mint> s) {
    int N=si(s);
    vector<mint> b,c;
    b.reserve(N+1);
    c.reserve(N+1);
    b.pb(1);
    c.pb(1);
    mint y=1;
    
    for(int ed=1;ed<=N;ed++){
        int l=si(c),m=si(b);
        mint x=0;
        for(int i=0;i<l;i++){
            x+=c[i]*s[ed-l+i];
        }
        b.pb(0);
        m++;
        if(x==0) continue;
        mint freq=x/y;
        if(l<m){
            auto tmp=c;
            c.insert(begin(c),m-l,0);
            for(int i=0;i<m;i++) c[m-1-i]-=freq*b[m-1-i];
            b=tmp;
            y=x;
        }else{
            for(int i=0;i<m;i++) c[l-1-i]-=freq*b[m-1-i];
        }
    }
    reverse(begin(c),end(c));
    
    c.erase(c.begin());
    for(int i=0;i<si(c);i++) c[i]*=-1;
    
    return c;
    
    // https://nyaannyaan.github.io/library/fps/berlekamp-massey.hpp
}

mint ESPER(vector<mint> S,ll K){
    if(K<si(S)) return S[K];
    auto X=BerlekampMassey(S);
    S.resize(si(X));
    return senkeizenka(S,X,K);
}

// [x^deg] f(x)^i g(x) を i=0,1,...,m で列挙

vector<mint> pow_enum(vector<mint> f,vector<mint> g,int deg,int m){
    int n=1;
    while(n<deg+1) n*=2;
    int need=n-(deg+1);
    vector<mint> gg(need);
    for(int i=0;i<si(g);i++){
        gg.pb(g[i]);
    }
    g=gg;
    f.resize(n);
    g.resize(n);
    mint c=f[0];
    f[0]=0;
    
    int k=1;
    
    vector<vector<mint>> P(n,vector<mint>(k)),Q=P;
    for(int i=0;i<n;i++){
        P[i][0]=g[i];
        Q[i][0]=-f[i];
    }
    
    auto m2dPQR=[&](vector<vector<mint>> PP,vector<vector<mint>> QQ,vector<vector<mint>> RR){
        vector<mint> P(n*k*2),Q=P,R=P;
        for(int i=0;i<si(PP);i++){
            for(int j=0;j<si(PP[i]);j++){
                P[i*k*2+j]=PP[i][j];
                Q[i*k*2+j]=QQ[i][j];
                R[i*k*2+j]=RR[i][j];
            }
        }
        P=prebat(P,n*k*4);
        Q=prebat(Q,n*k*4);
        R=prebat(R,n*k*4);
        for(int i=0;i<si(P);i++){
            P[i]*=R[i];
            Q[i]*=R[i];
        }
        P=sufbat(P,n*k*4);
        Q=sufbat(Q,n*k*4);
        vector<vector<mint>> S(n,vector<mint>(k*2)),T=S;
        
        for(int i=0;i<si(S);i++){
            for(int j=1;j<si(S[i]);j++){
                S[i][j]=P[i*k*2+j-1];
            }
            for(int j=0;j<si(PP[i]);j++){
                S[i][j]+=PP[i][j];
            }
        }
        
        for(int i=0;i<si(T);i++){
            for(int j=1;j<si(T[i]);j++){
                T[i][j]=Q[i*k*2+j-1];
            }
            for(int j=0;j<si(QQ[i]);j++){
                T[i][j]+=QQ[i][j];
                T[i][j]+=RR[i][j];
            }
        }
        
        return mp(S,T);
    };
    
    while(n>1){
        auto R=Q;
        for(int i=1;i<n;i+=2) for(int j=0;j<si(R[i]);j++) R[i][j]=-R[i][j];
        auto [S,T]=m2dPQR(P,Q,R);
        
        vector<vector<mint>> U(n/2,vector<mint>(k*2)),V=U;
        for(int i=0;i<n/2;i++){
            U[i]=S[i*2+1];
            V[i]=T[i*2];
        }
        P=U;
        Q=V;
        n/=2;
        k*=2;
    }
    vector<mint> res=P[0];
    res.resize(m+1);
    vector<mint> kei(m+1);
    for(int i=0;i<=m;i++){
        res[i]*=finv[i];
        kei[i]=c.pow(i)*finv[i];
    }
    res=atcoder::convolution(res,kei);
    res.resize(m+1);
    for(int i=0;i<=m;i++) res[i]*=fac[i];
    return res;
}

vector<vector<mint>> composite_inner(const vector<mint> &g,vector<vector<mint>> Q,int n,int k) {
    if(n==0){
        vector<mint> h=invv(Q[0],si(Q[0])-1);
        reverse(all(h));
        h=atcoder::convolution(g,h);
        
        vector<vector<mint>> P(n+1,vector<mint>(k+1));
        for(int i=0;i<si(g);i++){
            P[0][i]=h[i+si(Q[0])-1];
        }
        return P;
    }
    
    auto m2d=[&](vector<vector<mint>> AA,vector<vector<mint>> BB){
        int kk=si(AA[0])+si(BB[0])-1;
        vector<mint> A(si(AA)*kk),B(si(BB)*kk);
        for(int i=0;i<si(AA);i++){
            for(int j=0;j<si(AA[i]);j++){
                A[i*kk+j]=AA[i][j];
            }
        }
        for(int i=0;i<si(BB);i++){
            for(int j=0;j<si(BB[i]);j++){
                B[i*kk+j]=BB[i][j];
            }
        }
        auto C=atcoder::convolution(A,B);
        vector<vector<mint>> CC(si(AA)+si(BB)-1,vector<mint>(kk));
        for(int i=0;i<si(CC);i++){
            for(int j=0;j<si(CC[i]);j++){
                CC[i][j]=C[i*kk+j];
            }
        }
        return CC;
    };
    
    auto R=Q;
    for(int i=1;i<=n;i+=2){
        for(int j=0;j<si(R[i]);j++){
            R[i][j]=-R[i][j];
        }
    }
    auto T=m2d(Q,R);
    vector<vector<mint>> V(n/2+1,vector<mint>(k*2+1));
    for(int i=0;i<=n/2;i++){
        V[i]=T[i*2];
        assert(si(V[i])==k*2+1);
    }
    auto U=composite_inner(g,V,n/2,k*2);
    vector<vector<mint>> S(n+1,vector<mint>(k*2+1));
    for(int i=0;i<=n/2;i++){
        assert(si(U[i])==k*2+1);
        S[i*2+n%2]=U[i];
    }
    vector<vector<mint>> revR(n+1,vector<mint>(k+1));
    for(int i=0;i<=n;i++){
        revR[i]=R[n-i];
        reverse(all(revR[i]));
    }
    auto Pshift=m2d(S,revR);
    
    vector<vector<mint>> P(n+1,vector<mint>(k+1));
    for(int i=0;i<=n;i++){
        for(int j=0;j<=k;j++){
            P[i][j]=Pshift[i+n][j+k];
        }
    }
    
    return P;
}

// g(f(x))
vector<mint> composite(vector<mint> f,vector<mint> g,int deg){
    
    int ma=max({si(f),si(g),deg+1});
    
    f.resize(ma);
    g.resize(ma);
    
    mint c=f[0];
    f[0]=0;
    g=Taylor_Shift(g,c.val());
    
    int n=si(f)-1,k=1;
    vector<vector<mint>> Q(n+1,vector<mint>(k+1));
    Q[0][0]=1;
    for(int i=0;i<n+1;i++){
        Q[i][1]=-f[i];
    }
    auto P=composite_inner(g,Q,n,k);
    vector<mint> h(n+1);
    for(int i=0;i<=n;i++){
        h[i]=P[i][0];
    }
    reverse(all(h));
    h.resize(deg+1);
    
    return h;
}

// f(g(x)) = x を満たす g(x)
vector<mint> compositional_inv(vector<mint> f,int deg){
    assert(si(f)>=2&&f[1]!=0);
    if(deg==0) return {0};
    if(deg==1) return {0,f[1].inv()};
    
    int n=deg;
    auto h=pow_enum(f,{1},n,n);
    for(int i=0;i<si(h);i++) h[i]*=n;
    for(int k=1;k<=n;k++) h[k]/=k;
    reverse(all(h));
    mint hi=h[0].inv();
    for(int i=0;i<si(h);i++) h[i]*=hi;
    
    auto g=logg(h,n);
    mint ni=mint(-n).inv();
    for(int i=0;i<si(g);i++) g[i]*=ni;
    g=expp(g,n);
    mint fii=f[1].inv();
    for(int i=0;i<si(g);i++) g[i]*=fii;
    g.insert(g.begin(),0);
    g.resize(deg+1);
    return g;
}

mint sum[73][73][73][2][2],cn[73][73][73][2][2];

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    ll N;cin>>N;
    cn[61][0][0][0][0]=1;
    
    for(int t=60;t>=0;t--){
        for(int a=0;a<=61;a++){
            for(int b=0;b<=61;b++){
                for(int f=0;f<2;f++){
                    for(int g=0;g<2;g++){
                        for(int c=0;c<2;c++){
                            for(int d=0;d<2;d++){
                                
                                int nf=f,ng=g;
                                
                                if(f==0){
                                    if(N&(1LL<<t)){
                                        if(!c) nf=true;
                                    }else{
                                        if(c) continue;
                                    }
                                }
                                if(g==0){
                                    if(N&(1LL<<t)){
                                        if(!d) ng=true;
                                    }else{
                                        if(d) continue;
                                    }
                                }
                                
                                cn[t][a+c][b+d][nf][ng]+=cn[t+1][a][b][f][g];
                                sum[t][a+c][b+d][nf][ng]+=sum[t+1][a][b][f][g];
                                if(c&&d) sum[t][a+c][b+d][nf][ng]+=cn[t+1][a][b][f][g]*((1LL<<t)%mod);
                            }
                        }
                    }
                }
            }
        }
    }
    
    mint ans=0;
    
    for(int a=0;a<=60;a++){
        for(int f=0;f<2;f++){
            for(int g=0;g<2;g++){
                ans+=sum[0][a][a][f][g];
            }
        }
    }
    
    ans+=(mint)(N)*(N+1)/2;
    ans/=2;
    
    cout<<ans.val()<<endl;
}


0