結果
| 問題 | No.1100 Boxes |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2026-01-19 21:04:49 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 55 ms / 2,000 ms |
| コード長 | 43,622 bytes |
| 記録 | |
| コンパイル時間 | 4,007 ms |
| コンパイル使用メモリ | 308,952 KB |
| 実行使用メモリ | 8,892 KB |
| 最終ジャッジ日時 | 2026-01-19 21:04:55 |
| 合計ジャッジ時間 | 5,816 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 36 |
ソースコード
#line 1 "No_1100_Boxes.cpp"
#define YRSD
#line 2 "YRS/all.hpp"
#line 2 "YRS/aa/head.hpp"
#include <iostream>
#include <algorithm>
#include <array>
#include <bitset>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <string>
#include <tuple>
#include <bit>
#include <chrono>
#include <functional>
#include <iomanip>
#include <utility>
#include <type_traits>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <limits>
#define TE template
#define TN typename
#define Z auto
#define ep emplace_back
#define eb emplace
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define OV4(a, b, c, d, e, ...) e
#define FOR1(a) for (int _ = 0; _ < (a); ++_)
#define FOR2(i, a) for (int i = 0; i < (a); ++i)
#define FOR3(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR4(i, a, b, c) for (int i = (a); i < (b); i += (c))
#define FOR(...) OV4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR1_R(a) for (int _ = (a) - 1; _ >= 0; --_)
#define FOR2_R(i, a) for (int i = (a) - 1; i >= 0; --i)
#define FOR3_R(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define FOR4_R(i, a, b, c) for (int i = (b) - 1; i >= (a); i -= (c))
#define FOR_R(...) OV4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (int t = (s); t > -1; t = (t == 0 ? -1 : (t - 1) & s))
using std::array, std::bitset, std::deque, std::greater, std::less, std::map,
std::multiset, std::pair, std::priority_queue, std::set, std::istream,
std::ostream, std::string, std::vector, std::tuple, std::cerr;
using std::cin, std::cout, std::swap, std::iota, std::endl, std::prev,
std::next, std::min, std::max, std::tie, std::move, std::reverse, std::copy, std::gcd, std::lcm;
TE<TN T> using vc = vector<T>;
TE<TN T> using vvc = vector<vc<T>>;
TE<TN T> using T1 = tuple<T>;
TE<TN T> using T2 = tuple<T, T>;
TE<TN T> using T3 = tuple<T, T, T>;
TE<TN T> using T4 = tuple<T, T, T, T>;
TE<TN T> using max_heap = priority_queue<T>;
TE<TN T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
using u8 = unsigned char; using uint = unsigned int; using ll = long long; using ull = unsigned long long;
using ld = long double; using i128 = __int128; using u128 = __uint128_t; using f128 = __float128;
using PII = pair<int, int>; using PLL = pair<ll, ll>;
#ifdef YRSD
constexpr bool dbg = 1;
#else
constexpr bool dbg = 0;
#endif
#line 2 "YRS/IO/IO.hpp"
istream &operator>>(istream &I, i128 &x) {
static string s;
I >> s;
int f = s[0] == '-';
x = 0;
const int N = (int)s.size();
FOR(i, f, N) x = x * 10 + s[i] - '0';
if (f) x = -x;
return I;
}
ostream &operator<<(ostream &O, i128 x) {
static string s;
s.clear();
bool f = x < 0;
if (f) x = -x;
while (x) s += '0' + x % 10, x /= 10;
if (s.empty()) s += '0';
if (f) s += '-';
return std::reverse(all(s)), O << s;
}
istream &operator>>(istream &I, f128 &x) {
static string s;
return I >> s, x = std::stold(s), I;
}
ostream &operator<<(ostream &O, const f128 x) { return O << ld(x); }
TE<TN... S> istream &operator>>(istream &I, tuple<S...> &t) {
return std::apply([&I](Z &...args) { ((I >> args), ...); }, t), I;
}
TE<TN T, TN U> istream &operator>>(istream &I, pair<T, U> &x) {
return I >> x.fi >> x.se;
}
TE<TN T, TN U> ostream &operator<<(ostream &O, const pair<T, U> &x) {
return O << x.fi << ' ' << x.se;
}
TE<TN V>
requires requires(V &c) { std::begin(c); std::end(c); } and
(not std::is_same_v<std::decay_t<V>, string>)
istream &operator>>(istream &I, V &c) {
for (Z &e : c) I >> e;
return I;
}
TE<TN V> requires requires(const V &c) { std::begin(c); std::end(c); } and
(not std::is_same_v<std::decay_t<V>, const char*>) and
(not std::is_same_v<std::decay_t<V>, string>) and
(not std::is_array_v<std::remove_reference_t<V>> or
not std::is_same_v<std::remove_extent_t<std::remove_reference_t<V>>, char>)
ostream &operator<<(ostream &O, const V &c) {
if (c.empty()) return O;
Z it = c.begin();
O << *it++;
std::for_each(it, c.end(), [&O](const Z &e) { O << ' ' << e; });
return O;
}
bool IN() { return true; }
TE<TN T, TN... S> bool IN(T &x, S &...y) {
if (not(cin >> x)) return false;
return IN(y...);
}
void print() { cout << '\n'; }
TE<TN T, TN... S> void print(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
print(std::forward<S>(y)...);
}
void put() { cout << ' '; }
TE<TN T, TN... S> void put(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
put(std::forward<S>(y)...);
}
#define INT(...) int __VA_ARGS__; IN(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; IN(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__; IN(__VA_ARGS__)
#define I128(...) i128 __VA_ARGS__; IN(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; IN(__VA_ARGS__)
#define CH(...) char __VA_ARGS__; IN(__VA_ARGS__)
#define REAL(...) RE __VA_ARGS__; IN(__VA_ARGS__)
#define VEC(T, a, n) vc<T> a(n); IN(a)
#define VVEC(T, a, n, m) vvc<T> a(n, vc<T>(m)); IN(a)
void YES(bool o = 1) { print(o ? "YES" : "NO"); }
void Yes(bool o = 1) { print(o ? "Yes" : "No"); }
void yes(bool o = 1) { print(o ? "yes" : "no"); }
void NO(bool o = 1) { YES(not o); }
void No(bool o = 1) { Yes(not o); }
void no(bool o = 1) { yes(not o); }
void ALICE(bool o = 1) { print(o ? "ALICE" : "BOB"); }
void Alice(bool o = 1) { print(o ? "Alice" : "Bob"); }
void alice(bool o = 1) { print(o ? "alice" : "bob"); }
void BOB(bool o = 1) { ALICE(not o); }
void Bob(bool o = 1) { Alice(not o); }
void bob(bool o = 1) { alice(not o); }
void POSSIBLE(bool o = 1) { print(o ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool o = 1) { print(o ? "Possible" : "Impossible"); }
void possible(bool o = 1) { print(o ? "possible" : "impossible"); }
void IMPOSSIBLE(bool o = 1) { POSSIBLE(not o); }
void Impossible(bool o = 1) { Possible(not o); }
void impossible(bool o = 1) { possible(not o); }
void TAK(bool o = 1) { print(o ? "TAK" : "NIE"); }
void NIE(bool o = 1) { TAK(not o); }
#line 5 "YRS/all.hpp"
constexpr ld pi = 3.141592653589793L;
TE<TN T> constexpr T inf = std::numeric_limits<T>::max();
TE<> constexpr i128 inf<i128> = i128(std::numeric_limits<ll>::max()) * 2'000'000'000'000'000'000;
TE<TN T, TN U> constexpr pair<T, U> inf<pair<T, U>> = {inf<T>, inf<U>};
TE<TN T> constexpr static int popcount(T x) {
using U = std::make_unsigned_t<T>;
return std::__popcount(static_cast<U>(x));
}
TE<TN T> constexpr static int pc(T x) { return popcount(x); }
TE<TN T> constexpr static ll len(const T &a) { return a.size(); }
TE<TN T> constexpr static string to_s(T x) { return std::to_string(x); }
TE<TN T> void reverse(T &a) { reverse(all(a)); }
TE<TN T> void sort(T &a) { std::sort(all(a)); }
TE<TN T> void sort(T &a, Z cmp) { std::sort(all(a), cmp); }
TE<TN T> void unique(T &a) {
std::sort(all(a));
a.erase(std::unique(all(a)), a.end());
}
TE<TN T> vc<int> inverse(const vc<T> &A) {
int N = len(A);
vc<int> B(N, -1);
FOR(i, N) if (A[i] != -1) B[A[i]] = i;
return B;
}
Z QMAX(const Z &A) { return *std::max_element(all(A)); }
Z QMIN(const Z &A) { return *std::min_element(all(A)); }
constexpr bool chmax(Z &a, const Z &b) { return (a < b ? a = b, true : false); }
constexpr bool chmin(Z &a, const Z &b) { return (a > b ? a = b, true : false); }
TE<TN T, TN U> constexpr static pair<T, U> operator-(const pair<T, U> &p) {
return pair<T, U>(-p.fi, -p.se);
}
TE<TN T> vc<int> argsort(const T &A) {
vc<int> I(A.size());
iota(all(I), 0);
std::sort(all(I), [&](int i, int k) { return A[i] < A[k] or (A[i] == A[k] and i < k); });
return I;
}
TE<TN T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
int N = len(I);
vc<T> B(N);
FOR(i, N) B[i] = A[I[i]];
return B;
}
TE<bool off = 1, TN T> vc<T> pre_sum(const vc<T> &v) {
int N = v.size();
vc<T> A(N + 1);
FOR(i, N) A[i + 1] = A[i] + v[i];
if constexpr (off == 0) A.erase(A.begin());
return A;
}
TE<TN T = int> vc<T> s_to_vec(const string &s, char off) {
int N = len(s);
vc<T> A(N);
FOR(i, N) A[i] = (s[i] != '?' ? s[i] - off : -1);
return A;
}
TE<TN T> constexpr static int topbit(T x) {
if (x == 0) return - 1;
if constexpr (sizeof(T) <= 4) return 31 - __builtin_clz(x);
else return 63 - __builtin_clzll(x);
}
TE<TN T> constexpr static int lowbit(T x) {
if (x == 0) return -1;
if constexpr (sizeof(T) <= 4) return __builtin_ctz(x);
else return __builtin_ctzll(x);
}
TE<TN T> constexpr T floor(T x, T y) { return x / y - (x % y and (x ^ y) < 0); }
TE<TN T> constexpr T ceil(T x, T y) { return floor(x + y - 1, y); }
TE<TN T> pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return pair{q, x - q * y};
}
TE<TN T = ll> T SUM(const Z &v) { return std::accumulate(all(v), T(0)); }
Z LB(const Z &a, Z x) { return std::lower_bound(all(a), x); }
Z UB(const Z &a, Z x) { return std::upper_bound(all(a), x); }
int lower_bound(const Z &a, Z x) { return LB(a, x) - a.begin(); }
int upper_bound(const Z &a, Z x) { return UB(a, x) - a.begin(); }
int lb(const Z &a, Z x) { return LB(a, x) - a.begin(); }
int ub(const Z &a, Z x) { return UB(a, x) - a.begin(); }
TE<bool ck = true> ll bina(const Z &F, ll L, ll R) {
if constexpr (ck) assert(F(L));
while (std::abs(L - R) > 1) {
ll x = (R + L) >> 1;
(F(x) ? L : R) = x;
}
return L;
}
TE<TN T> T bina_real(const Z &F, T L, T R, int c = 100) {
while (c--) {
T m = (L + R) / 2;
(F(m) ? L : R) = m;
}
return (L + R) / 2;
}
TE<TN T> Z pop(T &s) {
if constexpr (requires { s.back(); }) {
Z x = s.back();
return s.pop_back(), x;
} else {
Z x = s.top();
return s.pop(), x;
}
}
void setp(int x) { cout << std::fixed << std::setprecision(x); }
#line 1 "YRS/debug.hpp"
#ifdef YRSD
void DBG() { cerr << ']' << std::endl; }
TE<TN T, TN... S> void DBG(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
DBG(std::forward<S>(y)...);
}
void DBG_ERR() { cerr << std::endl; }
TE<TN T, TN... S> void DBG_ERR(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
DBG_ERR(std::forward<S>(y)...);
}
#define debug(...) cerr << '[' << __LINE__ << ']' << ": [" #__VA_ARGS__ "] = [", DBG(__VA_ARGS__)
#define err(...) cerr << '[' << __LINE__ << ']' << ": ", DBG_ERR(__VA_ARGS__)
#define asser assert
#else
#define debug(...) void(0721)
#define err(...) void(0721)
#define asser(...) void(0721)
#endif
#line 4 "No_1100_Boxes.cpp"
// #include "YRS/IO/fast_io.hpp"
// #include "YRS/random/rng.hpp"
#line 2 "YRS/po/all.hpp"
#line 2 "YRS/po/fps_inv.hpp"
#line 2 "YRS/po/c/count_terms.hpp"
// 非 0 数量
template<typename mint>
int count_terms(const vc<mint> &f){
int t = 0, N = len(f);
FOR(i, N) if(f[i] != mint(0)) ++t;
return t;
}
#line 2 "YRS/po/convolution.hpp"
#line 2 "YRS/po/c/ntt.hpp"
#line 2 "YRS/mod/modint.hpp"
#line 2 "YRS/mod/modint_common.hpp"
template <class T>
concept is_mint = requires(T x) {
{ T::get_mod() };
{ T::gen(0ull) } -> std::same_as<T>;
x.val;
};
template <class mint>
concept has_const_mod =
requires { std::integral_constant<int, (int)mint::get_mod()> {}; };
template <typename mint>
static vc<mint> &invs() {
static vc<mint> a{0, 1};
return a;
}
template <typename mint>
static vc<mint> &fac() {
static vc<mint> a{1, 1};
return a;
}
template <typename mint>
static vc<mint> &ifac() {
static vc<mint> a{1, 1};
return a;
}
template <typename mint>
static int Set_inv(int N) {
static vc<mint> &inv = invs<mint>();
if (len(inv) >= N) return N;
inv.resize(N + 1);
inv[0] = 1, inv[1] = 1;
FOR(i, 1, N) inv[i + 1] = inv[i] * i;
mint t = pop(inv).inv();
FOR_R(i, N) inv[i] *= t, t *= i;
return N;
}
template <typename mint>
static int Set_comb(int N) {
static vector<mint> &fa = fac<mint>(), &ifa = ifac<mint>();
if (len(fa) >= N) return N;
fa.resize(N);
ifa.resize(N);
FOR(i, 1, N) fa[i] = fa[i - 1] * i;
ifa[N - 1] = fa[N - 1].inv();
FOR_R(i, N - 1) ifa[i] = ifa[i + 1] * (i + 1);
return N;
}
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vc<mint> &dat = invs<mint>();
assert(0 <= n);
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
int r = k * q - mod;
dat.ep(dat[r] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
static vc<mint> &dat = fac<mint>();
assert(0 <= n);
if (n >= mod) return 0;
while (len(dat) <= n) {
int k = len(dat);
dat.ep(dat[k - 1] * mint(k));
}
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vc<mint> &dat = ifac<mint>();
if (n < 0) return mint(0);
while (len(dat) <= n)
dat.ep(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <typename mint, typename... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, typename Head, typename... Tail>
mint multinomial(Head&& head, Tail&&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 or n < k) return 0;
static vc<vc<mint>> C;
static int H = 0, W = 0;
Z calc = [&](int i, int j) -> mint {
if (i == 0) return(j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
for (int i = 0; i < H; ++i) {
C[i].resize(k + 1);
for (int j = W; j < k + 1; ++j) {
C[i][j] = calc(i, j);
}
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
for (int i = H; i < n + 1; ++i) {
C[i].resize(W);
for (int j = 0; j < W; ++j) {
C[i][j] = calc(i, j);
}
}
H = n + 1;
}
return C[n][k];
}
template <typename mint>
mint C(int N, int K) {
assert(N >= 0);
if (K < 0 or N < K) return 0;
return fact<mint>(N) * fact_inv<mint>(K) * fact_inv<mint>(N - K);
}
template <typename mint>
mint lucas(ll N, ll K) {
static constexpr int P = mint::get_mod();
if (K > N) return 0;
if (K == 0) return 1;
return C<mint>(N % P, K % P) * lucas<mint>(N / P, K / P);
}
template <typename mint, bool large = false, bool dense = false>
mint CC(ll n, ll k) {
assert(n >= 0);
if (k < 0 or n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (not large) return multinomial<mint>(n, k, n - k);
k = std::min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k and k <= n);
if (not large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / CC<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) return (d == 0 ? mint(1) : mint(0));
return CC<mint, large, dense>(n + d - 1, d);
}
#define CC C<mint>
#define fac fact<mint>
#define ifac fact_inv<mint>
#define set_comb Set_comb<mint>
#define set_inv Set_inv<mint>
#line 4 "YRS/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr uint umod = uint(mod);
static_assert(umod < uint(1) << 31);
uint val;
static constexpr modint raw(uint v) {
modint x;
x.val = v;
return x;
}
static constexpr modint gen(uint x) {
modint s;
s.val = x;
return s;
}
constexpr modint() : val(0) {}
constexpr modint(uint x) : val(x % umod) {}
constexpr modint(ull x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x) {}
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x) {}
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x) {}
bool operator<(const modint &p) const { return val < p.val; }
constexpr modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
constexpr modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
constexpr modint &operator*=(const modint &p) {
val = ull(val) * p.val % umod;
return *this;
}
constexpr modint &operator/=(const modint &p) {
*this *= p.inv();
return *this;
}
constexpr modint operator-() const { return modint::gen(val ? mod - val : uint(0)); }
constexpr modint operator+(const modint &p) const { return modint(*this) += p; }
constexpr modint operator-(const modint &p) const { return modint(*this) -= p; }
constexpr modint operator*(const modint &p) const { return modint(*this) *= p; }
constexpr modint operator/(const modint &p) const { return modint(*this) /= p; }
constexpr bool operator==(const modint &p) const { return val == p.val; }
constexpr bool operator!=(const modint &p) const { return val != p.val; }
friend istream &operator>>(istream &is, modint &p) {
ll x;
is >> x;
p = x;
return is;
}
friend ostream &operator<<(ostream &os, modint p) { return os << p.val; }
constexpr modint inv() const {
int a = val, b = mod, x = 1, y = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(x -= t * y, y);
}
return modint(x);
}
constexpr modint pow(ll k) const {
modint r(1), a(val);
for (; k; k >>= 1, a *= a)
if (k & 1) r *= a;
return r;
}
static constexpr int get_mod() { return mod; }
static constexpr PII ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using M99 = modint<998244353>;
using M17 = modint<1000000007>;
#ifdef FIO
template <int mod>
void rd(modint<mod> &x) {
LL(y);
x = y;
}
template <int mod>
void wt(modint<mod> x) {
wt(x.val);
}
#endif
#line 4 "YRS/po/c/ntt.hpp"
template <typename mint>
void ntt(vc<mint> &a, bool in) {
asser(mint::can_ntt());
constexpr int p = mint::ntt_info().fi;
constexpr uint mod = mint::get_mod();
static array<mint, 30> r, ir, ra, ira, rat, irat;
assert(p != -1 and len(a) <= (1 << max(0, p)));
static bool ok = 0;
if (not ok) {
ok = 1;
r[p] = mint::ntt_info().se;
ir[p] = mint(1) / r[p];
FOR_R(i, p) {
r[i] = r[i + 1] * r[i + 1];
ir[i] = ir[i + 1] * ir[i + 1];
}
mint s = 1, in = 1;
FOR(i, p - 1) {
ra[i] = r[i + 2] * s;
ira[i] = ir[i + 2] * in;
s *= ir[i + 2];
in *= r[i + 2];
}
s = 1, in = 1;
FOR(i, p - 2) {
rat[i] = r[i + 3] * s;
irat[i] = ir[i + 3] * in;
s *= ir[i + 3];
in *= r[i + 3];
}
}
int N = len(a), n = topbit(N);
if (not in) {
int sz = 0;
while (sz < n) {
if (n - sz == 1) {
int p = 1 << (n - sz - 1);
mint c = 1;
FOR(s, 1 << sz) {
int of = s << (n - sz);
FOR(i, p) {
mint l = a[i + of], r = a[i + of + p] * c;
a[i + of] = l + r, a[i + of + p] = l - r;
}
c *= ra[topbit(~s & -~s)];
}
++sz;
} else {
int p = 1 << (n - sz - 2);
mint c = 1, in = r[2];
FOR(s, 1 << sz) {
mint r2 = c * c, r3 = r2 * c;
int of = s << (n - sz);
FOR(i, p) {
constexpr ull m2 = ull(mod) * mod;
ull a0 = a[i + of].val, a1 = ull(a[i + of + p].val) * c.val;
ull a2 = ull(a[i + of + 2 * p].val) * r2.val;
ull a3 = ull(a[i + of + 3 * p].val) * r3.val;
ull t = (a1 + m2 - a3) % mod * in.val;
ull na = m2 - a2;
a[i + of] = a0 + a1 + a2 + a3;
a[i + of + p] = a0 + a2 + m2 * 2 - a1 - a3;
a[i + of + 2 * p] = a0 + na + t;
a[i + of + 3 * p] = a0 + na + m2 - t;
}
c *= rat[topbit(~s & -~s)];
}
sz += 2;
}
}
} else {
mint c = mint(1) / mint(N);
FOR(i, N) a[i] *= c;
int sz = n;
while (sz) {
if (sz == 1) {
int p = 1 << (n - sz);
mint c = 1;
FOR(s, 1 << (sz - 1)) {
int of = s << (n - sz + 1);
FOR(i, p) {
ull l = a[i + of].val, r = a[i + of + p].val;
a[i + of] = l + r;
a[i + of + p] = (mod + l - r) * c.val;
}
c *= ira[topbit(~s & -~s)];
}
--sz;
} else {
int p = 1 << (n - sz);
mint c = 1, in = ir[2];
FOR(s, 1 << (sz - 2)) {
mint r2 = c * c, r3 = r2 * c;
int of = s << (n - sz + 2);
FOR(i, p) {
ull a0 = a[i + of].val, a1 = a[i + of + p].val;
ull a2 = a[i + of + 2 * p].val;
ull a3 = a[i + of + 3 * p].val;
ull x = (mod + a2 - a3) * in.val % mod;
a[i + of] = a0 + a1 + a2 + a3;
a[i + of + p] = (a0 + mod - a1 + x) * c.val;
a[i + of + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * r2.val;
a[i + of + 3 * p] = (a0 + 2 * mod - a1 - x) * r3.val;
}
c *= irat[topbit(~s & -~s)];
}
sz -= 2;
}
}
}
}
#line 2 "YRS/mod/crt3.hpp"
constexpr uint pow_constexpr(ull a, ull b, uint mod) {
a %= mod;
ull res = 1;
FOR(32) {
if (b & 1) res = res * a % mod;
a = a * a % mod, b >>= 1;
}
return res;
}
template <typename T, uint p0, uint p1>
T CRT2(ull a0, ull a1) {
static_assert(p0 < p1);
static constexpr ull x0_1 = pow_constexpr(p0, p1 - 2, p1);
ull c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, uint p0, uint p1, uint p2>
T CRT3(ull a0, ull a1, ull a2) {
static_assert(p0 < p1 and p1 < p2);
static constexpr ull x1 = pow_constexpr(p0, p1 - 2, p1);
static constexpr ull x2 = pow_constexpr(ull(p0) * p1 % p2, p2 - 2, p2);
static constexpr ull p01 = ull(p0) * p1;
ull c = (a1 - a0 + p1) * x1 % p1;
ull ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, uint p0, uint p1, uint p2, uint p3>
T CRT4(ull a0, ull a1, ull a2, ull a3) {
static_assert(p0 < p1 and p1 < p2 and p2 < p3);
static constexpr ull x1 = pow_constexpr(p0, p1 - 2, p1);
static constexpr ull x2 = pow_constexpr(ull(p0) * p1 % p2, p2 - 2, p2);
static constexpr ull x3 = pow_constexpr(ull(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr ull p01 = ull(p0) * p1;
ull c = (a1 - a0 + p1) * x1 % p1;
ull ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, uint p0, uint p1, uint p2, uint p3, uint p4>
T CRT5(ull a0, ull a1, ull a2, ull a3, ull a4) {
static_assert(p0 < p1 and p1 < p2 and p2 < p3 and p3 < p4);
static constexpr ull x1 = pow_constexpr(p0, p1 - 2, p1);
static constexpr ull x2 = pow_constexpr(ull(p0) * p1 % p2, p2 - 2, p2);
static constexpr ull x3 = pow_constexpr(ull(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr ull x4 = pow_constexpr(ull(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr ull p01 = ull(p0) * p1;
static constexpr ull p23 = ull(p2) * p3;
ull c = (a1 - a0 + p1) * x1 % p1;
ull ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<ull>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<ull>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 5 "YRS/po/convolution.hpp"
template <typename mint>
vc<mint> conv_naive(const vc<mint> &a, const vc<mint> &b) {
int N = len(a), M = len(b), sz = N + M - 1;
if (not N or not M) return {};
if (N > M) return conv_naive(b, a);
vc<mint> c(sz);
FOR(i, N) FOR(k, M) c[i + k] += a[i] * b[k];
return c;
}
template <typename mint>
vc<mint> conv_ntt(vc<mint> a, vc<mint> b) {
static_assert(mint::can_ntt());
if (a.empty() or b.empty()) return {};
int N = len(a), M = len(b), sz = 1;
while (sz < N + M - 1) sz <<= 1;
a.resize(sz), b.resize(sz);
bool ok = a == b;
ntt(a, 0);
if (ok) b = a;
else ntt(b, 0);
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(N + M - 1);
return a;
}
template <typename mint>
vc<mint> conv_mtt(const vc<mint> &a, const vc<mint> &b) {
int N = len(a), M = len(b);
if (not N or not M) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using M0 = modint<p0>;
using M1 = modint<p1>;
using M2 = modint<p2>;
vc<M0> a0(N), b0(M);
vc<M1> a1(N), b1(M);
vc<M2> a2(N), b2(M);
FOR(i, N) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, M) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
vc<M0> c0 = conv_ntt<M0>(a0, b0);
vc<M1> c1 = conv_ntt<M1>(a1, b1);
vc<M2> c2 = conv_ntt<M2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, N + M - 1)
c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
return c;
}
template <typename mint>
vc<mint> convolution(const vc<mint> &a, const vc<mint> &b) {
int N = len(a), M = len(b);
if (not N or not M) return {};
if (min(N, M) <= 30) return conv_naive(a, b);
if constexpr (mint::can_ntt()) return conv_ntt(a, b);
return conv_mtt(a, b);
}
#line 5 "YRS/po/fps_inv.hpp"
// O(NK)
template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint> &f) {
int N = len(f);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.ep(i, f[i]);
vc<mint> g(N);
mint t = mint(1) / f[0];
g[0] = t;
FOR(i, 1, N) {
mint s = 0;
for (Z &&[x, y] : dat) {
if (x > i) break;
s -= y * g[i - x];
}
g[i] = s * t;
}
return g;
}
template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint> &a) {
vc<mint> res{mint(1) / a[0]};
int N = len(a), n = 1;
for (res.reserve(N); n < N; n <<= 1) {
vc<mint> f(n << 1), g(n << 1);
int L = min(N, n << 1);
copy(a.begin(), a.begin() + L, f.begin());
copy(res.begin(), res.begin() + n, g.begin());
ntt(f, 0);
ntt(g, 0);
FOR(i, n << 1) f[i] *= g[i];
ntt(f, 1);
fill(f.begin(), f.begin() + n, 0);
ntt(f, 0);
FOR(i, n << 1) f[i] *= g[i];
ntt(f, 1);
FOR(i, n, L) res.ep(-f[i]);
}
return res;
}
template <typename mint>
vc<mint> fps_inv_dense(const vc<mint> &F) {
if constexpr (mint::can_ntt()) return fps_inv_dense_ntt(F);
int N = len(F);
vc<mint> R = {mint(1) / F[0]}, p;
int n = 1;
while (n < N) {
p = convolution(R, R);
p.resize(n << 1);
vc<mint> f = {F.begin(), F.begin() + min(n << 1, N)};
p = convolution(p, f);
R.resize(n << 1);
FOR(i, n << 1) R[i] = R[i] + R[i] - p[i];
n <<= 1;
}
R.resize(N);
return R;
}
template <typename mint>
vc<mint> fps_inv(const vc<mint> &f) {
assert(f[0] != mint(0));
int sz = count_terms(f), c = mint::can_ntt() ? 160 : 820;
return sz <= c ? fps_inv_sparse(f) : fps_inv_dense(f);
}
#line 2 "YRS/po/fps_exp.hpp"
#line 2 "YRS/po/c/inte.hpp"
#line 4 "YRS/po/c/inte.hpp"
// 不定积分
template <typename mint>
vc<mint> inte(const vc<mint> &f) {
int N = len(f);
vc<mint> g(N + 1);
FOR(i, 1, N + 1) g[i] = f[i - 1] * inv<mint>(i);
return g;
}
// 定积分
template <typename mint>
mint inte(const vc<mint> &f, mint l, mint r) {
mint s = 0, L = 1, R = 1;
int N = len(f);
FOR(i, N) {
L *= l, R *= r;
s += inv<mint>(i + 1) * f[i] * (L - R);
}
return s;
}
#line 2 "YRS/po/c/diff.hpp"
#line 4 "YRS/po/c/diff.hpp"
template <typename mint>
vc<mint> diff(const vc<mint> &f) {
int N = len(f);
if (N <= 1) return {};
vc<mint> g(N - 1);
FOR(i, N - 1) g[i] = f[i + 1] * mint(i + 1);
return g;
}
#line 7 "YRS/po/fps_exp.hpp"
template <typename mint>
vc<mint> fps_exp_sparse(const vc<mint> &f) {
int N = len(f);
if (N == 0) return {mint(1)};
assert(f[0] == 0);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.ep(i - 1, f[i] * mint(i));
vc<mint> F(N);
F[0] = 1;
FOR(i, 1, N) {
mint s = 0;
for (Z [x, y] : dat) {
if (x > i - 1) break;
s += y * F[i - 1 - x];
}
F[i] = s * inv<mint>(i);
}
return F;
}
template <typename mint>
vc<mint> fps_exp_ntt(const vc<mint> &f) {
int N = len(f);
assert(N > 0 and f[0] == mint(0));
vc<mint> b = {1, (1 < N ? f[1] : 0)}, c = {1}, z1, z2 = {1, 1};
while (len(b) < N) {
int m = len(b);
Z y = b;
y.resize(m << 1);
ntt(y, 0);
z1 = z2;
vc<mint> z(m);
FOR(i, m) z[i] = y[i] * z1[i];
ntt(z, 1);
FOR(i, m >> 1) z[i] = 0;
ntt(z, 0);
FOR(i, m) z[i] *= -z1[i];
ntt(z, 1);
c.insert(c.end(), z.begin() + m / 2, z.end());
z2 = c;
z2.resize(m << 1);
ntt(z2, 0);
vc<mint> x(f.begin(), f.begin() + m);
FOR(i, len(x) - 1) x[i] = x[i + 1] * mint(i + 1);
x.back() = 0;
ntt(x, 0);
FOR(i, m) x[i] *= y[i];
ntt(x, 1);
FOR(i, m - 1) x[i] -= b[i + 1] * mint(i + 1);
x.resize(m << 1);
FOR(i, m - 1) x[m + i] = x[i], x[i] = 0;
ntt(x, 0);
FOR(i, m << 1) x[i] *= z2[i];
ntt(x, 1);
FOR_R(i, len(x) - 1) x[i + 1] = x[i] * inv<mint>(i + 1);
x[0] = 0;
FOR(i, m, min(N, m << 1)) x[i] += f[i];
FOR(i, m) x[i] = 0;
ntt(x, 0);
FOR(i, m << 1) x[i] *= y[i];
ntt(x, 1);
b.insert(b.end(), x.begin() + m, x.end());
}
b.resize(N);
return b;
}
template <typename mint>
vc<mint> fps_exp_dense(const vc<mint> &e) {
if constexpr (mint::can_ntt()) return fps_exp_ntt(e);
vc<mint> h = e;
int N = len(h);
assert(N > 0 and h[0] == mint(0));
int log = 0;
while (1 << log < N) ++log;
h.resize(1 << log);
Z dh = diff(h);
vc<mint> f = {1}, g = {1};
int m = 1;
vc<mint> p;
FOR(log) {
p = convolution(f, g);
p.resize(m);
p = convolution(p, g);
p.resize(m);
g.resize(m);
FOR(i, m) g[i] += g[i] - p[i];
p = {dh.begin(), dh.begin() + m - 1};
p = convolution(f, p);
p.resize(m + m - 1);
FOR(i, m + m - 1) p[i] = -p[i];
FOR(i, m - 1) p[i] += mint(i + 1) * f[i + 1];
p = convolution(p, g);
p.resize(m + m - 1);
FOR(i, m - 1) p[i] += dh[i];
p = inte(p);
FOR(i, m + m) p[i] = h[i] - p[i];
p[0] += mint(1);
f = convolution(f, p);
f.resize(m << 1);
m <<= 1;
}
f.resize(N);
return f;
}
template <typename mint>
vc<mint> fps_exp(const vc<mint> &f) {
int n = count_terms(f), t = mint::can_ntt() ? 320 : 3000;
return n <= t ? fps_exp_sparse(f) : fps_exp_dense(f);
}
#line 2 "YRS/po/fps_log.hpp"
#line 2 "YRS/po/fps_div.hpp"
#line 5 "YRS/po/fps_div.hpp"
template <typename mint>
vc<mint> fps_div_sprase(vc<mint> f, vc<mint> g) {
if (g[0] != mint(1)) {
mint c = g[0].inv();
for (Z &x : f) x *= c;
for (Z &x : g) x *= c;
}
vc<pair<int, mint>> dat;
int N = len(g);
FOR(i, 1, N) if (g[i] != mint(0)) dat.ep(i, -g[i]);
N = len(f);
FOR(i, N) for (Z [x, y] : dat) if (i >= x) f[i] += y * f[i - x];
return f;
}
template <typename mint>
vc<mint> fps_div_dense_ntt(const vc<mint> &f, const vc<mint> &g) {
int N = len(f), M = len(g);
if (N == 1) return {f[0] / g[0]};
int m = 1;
while (m + m < N) m <<= 1;
vc<mint> gs(g), A(m << 1), B(m << 1);
gs.resize(m);
gs = fps_inv(gs);
gs.resize(m << 1);
ntt(gs, 0);
copy(f.begin(), f.begin() + m, A.begin());
fill(A.begin() + m, A.begin() + N, 0);
ntt(A, 0);
FOR(i, m << 1) A[i] *= gs[i];
ntt(A, 1);
vc<mint> res(N);
copy(A.begin(), A.begin() + m, res.begin());
fill(A.begin() + m, A.begin() + m + m, 0);
ntt(A, 0);
copy(g.begin(), g.begin() + min(m << 1, M), B.begin());
fill(B.begin() + min(m << 1, M), B.end(), 0);
ntt(B, 0);
FOR(i, m << 1) A[i] *= B[i];
ntt(A, 1);
fill(A.begin(), A.begin() + m, 0);
FOR(i, m, min(m << 1, N)) A[i] -= f[i];
ntt(A, 0);
FOR(i, m << 1) A[i] *= gs[i];
ntt(A, 1);
FOR(i, m, N) res[i] -= A[i];
return res;
}
// f/g 截断的商
template <typename mint>
vc<mint> fps_div_dense(vc<mint> f, vc<mint> g) {
int N = len(f);
g.resize(N);
g = fps_inv<mint>(g);
f = convolution(f, g);
f.resize(N);
return f;
}
template <typename mint>
vc<mint> fps_div(const vc<mint> &f, const vc<mint> &g) {
if (count_terms(f) < 100) return fps_div_sprase(f, g);
if constexpr (mint::can_ntt()) return fps_div_dense_ntt(f, g);
return fps_div_dense(f, g);
}
#line 5 "YRS/po/fps_log.hpp"
template <typename mint>
vc<mint> fps_log_sparse(const vc<mint> &a) {
int N = len(a);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (a[i] != mint(0)) dat.ep(i, a[i]);
vc<mint> f(N), g(N - 1);
FOR(i, N - 1) {
mint s = a[i + 1] * mint(i + 1);
for (Z &&[x, y] : dat) {
if (x > i) break;
s -= y * g[i - x];
}
g[i] = s;
f[i + 1] = s * inv<mint>(i + 1);
}
return f;
}
template <typename mint>
vc<mint> fps_log_dense(const vc<mint> &f) {
assert(f[0] == mint(1));
int N = len(f);
vc<mint> fs(f);
FOR(i, N) fs[i] *= i;
fs = fps_div_dense_ntt(fs, f);
FOR(i, N) fs[i] *= inv<mint>(i);
return fs;
}
template <typename mint>
vc<mint> fps_log(const vc<mint> &f) {
assert(f[0] == mint(1));
int n = count_terms(f), t = mint::can_ntt() ? 200 : 1200;
return n <= t ? fps_log_sparse(f) : fps_log_dense(f);
}
#line 2 "YRS/po/fps_pow.hpp"
#line 5 "YRS/po/fps_pow.hpp"
template <typename mint>
vc<mint> fps_pw_sparse(const vc<mint> &f, mint k) {
int N = len(f);
assert(N == 0 or f[0] == mint(1));
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.ep(i, f[i]);
vc<mint> g(N);
g[0] = 1;
FOR(i, N - 1) {
mint &s = g[i + 1];
for (Z &&[x, y] : dat) {
if (x > i + 1) break;
mint t = y * g[i - x + 1];
s += t * (k * mint(x) - mint(i - x + 1));
}
s *= inv<mint>(i + 1);
}
return g;
}
template <typename mint>
vc<mint> fps_pw_dense(const vc<mint> &f, mint k) {
assert(f[0] == mint(1));
Z g = fps_log(f);
int N = len(f);
FOR(i, N) g[i] *= k;
return fps_exp_dense(g);
}
template <typename mint>
vc<mint> fps_pw(const vc<mint> &f, mint k) {
int n = count_terms(f), t = mint::can_ntt() ? 100 : 1300;
return n <= t ? fps_pw_sparse(f, k) : fps_pw_dense(f, k);
}
template <typename mint>
vc<mint> fps_pow(const vc<mint> &f, ll k) {
assert(0 <= k);
int N = len(f);
if (k == 0) {
vc<mint> g(N);
g[0] = 1;
return g;
}
if (f[0] == mint(1)) return fps_pw(f, mint(k));
int d = N;
FOR_R(i, N) if (f[i] != mint(0)) d = i;
if (d >= ceil<ll>(N, k)) return vc<mint>(N);
int of = d * k;
mint c = f[d], in = mint(1) / c;
vc<mint> g(N - of);
FOR(i, N - of) g[i] = f[d + i] * in;
g = fps_pw(g, mint(k));
vc<mint> r(N);
c = c.pow(k);
N = len(g);
FOR(i, N) r[of + i] = g[i] * c;
return r;
}
#line 2 "YRS/po/conv_all.hpp"
#line 2 "YRS/po/c/ntt_db.hpp"
#line 2 "YRS/po/c/transposed_ntt.hpp"
template <typename mint>
void transposed_ntt(vc<mint> &a, bool in) {
static_assert(mint::can_ntt());
constexpr int p = mint::ntt_info().fi;
constexpr uint mod = mint::get_mod();
static array<mint, 30> r, ir, rt, irt, rat, irat;
assert(p != -1 and len(a) <= (1 << max(0, p)));
static bool ok = 0;
if (not ok) {
ok = 1;
r[p] = mint::ntt_info().se;
ir[p] = mint(1) / r[p];
FOR_R(i, p) {
r[i] = r[i + 1] * r[i + 1];
ir[i] = ir[i + 1] * ir[i + 1];
}
mint s = 1, in = 1;
FOR(i, p - 1) {
rt[i] = r[i + 2] * s;
irt[i] = ir[i + 2] * in;
s *= ir[i + 2];
in *= r[i + 2];
}
s = 1, in = 1;
FOR(i, p - 2) {
rat[i] = r[i + 3] * s;
irat[i] = ir[i + 3] * in;
s *= ir[i + 3];
in *= r[i + 3];
}
}
int N = len(a), n = topbit(N);
assert(N == 1 << n);
if (not in) {
int sz = n;
while (sz > 0) {
if (sz == 1) {
int p = 1 << (n - sz);
mint c = 1;
FOR(s, 1 << (sz - 1)) {
int of = s << (n - sz + 1);
FOR(i, p) {
ull l = a[i + of].val, r = a[i + of + p].val;
a[i + of] = l + r, a[i + of + p] = (mod + l - r) * c.val;
}
c *= rt[topbit(~s & -~s)];
}
--sz;
} else {
int p = 1 << (n - sz);
mint c = 1, in = r[2];
FOR(s, 1 << (sz - 2)) {
int of = s << (n - sz + 2);
mint r2 = c * c, r3 = r2 * c;
FOR(i, p) {
ull a0 = a[i + of + 0 * p].val;
ull a1 = a[i + of + 1 * p].val;
ull a2 = a[i + of + 2 * p].val;
ull a3 = a[i + of + 3 * p].val;
ull x = (mod + a2 - a3) * in.val % mod;
a[i + of] = a0 + a1 + a2 + a3;
a[i + of + 1 * p] = (a0 + mod - a1 + x) * c.val;
a[i + of + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * r2.val;
a[i + of + 3 * p] = (a0 + 2 * mod - a1 - x) * r3.val;
}
c *= rat[topbit(~s & -~s)];
}
sz -= 2;
}
}
} else {
mint c = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= c;
int sz = 0;
while (sz < n) {
if (sz == n - 1) {
int p = 1 << (n - sz - 1);
mint c = 1;
FOR(s, 1 << sz) {
int of = s << (n - sz);
FOR(i, p) {
mint l = a[i + of], r = a[i + of + p] * c;
a[i + of] = l + r, a[i + of + p] = l - r;
}
c *= irt[topbit(~s & -~s)];
}
++sz;
} else {
int p = 1 << (n - sz - 2);
mint c = 1, in = ir[2];
FOR(s, 1 << sz) {
mint r2 = c * c, r3 = r2 * c;
int of = s << (n - sz);
FOR(i, p) {
ull m2 = ull(mod) * mod;
ull a0 = a[i + of].val;
ull a1 = ull(a[i + of + p].val) * c.val;
ull a2 = ull(a[i + of + 2 * p].val) * r2.val;
ull a3 = ull(a[i + of + 3 * p].val) * r3.val;
ull t = (a1 + m2 - a3) % mod * in.val;
ull na = m2 - a2;
a[i + of] = a0 + a1 + a2 + a3;
a[i + of + 1 * p] = a0 + a2 + (2 * m2 - a1 - a3);
a[i + of + 2 * p] = a0 + na + t;
a[i + of + 3 * p] = a0 + na + m2 - t;
}
c *= irat[topbit(~s & -~s)];
}
sz += 2;
}
}
}
}
#line 5 "YRS/po/c/ntt_db.hpp"
template <typename mint, bool transposed = false>
void ntt_db(vc<mint> &a) {
static array<mint, 30> rt;
static bool ok = 0;
if (not ok) {
ok = 1;
constexpr int s = mint::ntt_info().fi;
rt[s] = mint::ntt_info().se;
FOR_R(i, s) rt[i] = rt[i + 1] * rt[i + 1];
}
if constexpr (not transposed) {
int N = len(a);
Z b = a;
ntt(b, 1);
mint r = 1, z = rt[topbit(N << 1)];
FOR(i, N) b[i] *= r, r *= z;
ntt(b, 0);
copy(all(b), std::back_inserter(a));
} else {
int N = len(a) >> 1;
vc<mint> t{a.begin(), a.begin() + N};
a = {a.begin() + N, a.end()};
transposed_ntt(a, 0);
mint r = 1, z = rt[topbit(N << 1)];
FOR(i, N) a[i] *= r, r *= z;
transposed_ntt(a, 1);
FOR(i, N) a[i] += t[i];
}
}
#line 5 "YRS/po/conv_all.hpp"
// O(Nlog^2N) 总度数为 N ,即使fi度数很低,logfi度数也可能很大,试图用exp|log算会变成 NMlogN
template <typename mint>
vc<mint> conv_all(vc<vc<mint>> &f) {
if (f.empty()) return {{mint(1)}};
while (1) {
int N = len(f);
if (N == 1) break;
int m = (N + 1) >> 1;
FOR(i, m) {
if (i + i + 1 == N) f[i] = f[i << 1];
else f[i] = convolution(f[i << 1], f[i << 1 | 1]);
}
f.resize(m);
}
return f[0];
}
// product 1 - f[i]x
template <typename mint>
vc<mint> conv_all_1(vc<mint> f) {
if constexpr (not mint::can_ntt()) {
vc<vc<mint>> g;
for (Z &x : f) g.ep(vc<mint>({mint(1), -x}));
return conv_all(g);
}
int D = 6, N = 1, sz = len(f);
while (N < sz) N <<= 1;
int k = topbit(N);
vc<mint> F(N), nx(N);
FOR(i, sz) F[i] = -f[i];
FOR(d, k) {
int b = 1 << d;
if (d < D) {
fill(all(nx), mint(0));
FOR(L, 0, N, b << 1) {
FOR(i, b) FOR(j, b) nx[L + i + j] += F[L + i] * F[L + b + j];
FOR(i, b) nx[L + b + i] += F[L + i] + F[L + b + i];
}
} else if (d == D) {
FOR(L, 0, N, b << 1) {
vc<mint> f1 = {F.begin() + L, F.begin() + L + b};
vc<mint> f2 = {F.begin() + L + b, F.begin() + L + 2 * b};
f1.resize(b << 1), f2.resize(b << 1);
ntt(f1, 0), ntt(f2, 0);
FOR(i, b) nx[L + i] = f1[i] * f2[i] + f1[i] + f2[i];
FOR(i, b, b << 1) nx[L + i] = f1[i] * f2[i] - f1[i] - f2[i];
}
} else {
FOR(L, 0, N, b << 1) {
vc<mint> f1 = {F.begin() + L, F.begin() + L + b};
vc<mint> f2 = {F.begin() + L + b, F.begin() + L + 2 * b};
ntt_db(f1), ntt_db(f2);
FOR(i, b) nx[L + i] = f1[i] * f2[i] + f1[i] + f2[i];
FOR(i, b, b << 1) nx[L + i] = f1[i] * f2[i] - f1[i] - f2[i];
}
}
swap(F, nx);
}
if (k - 1 >= D) ntt(F, 1);
F.ep(1), reverse(all(F));
F.resize(sz + 1);
return F;
}
#line 2 "YRS/po/sinh_fps.hpp"
#line 4 "YRS/po/sinh_fps.hpp"
template <typename mint>
vc<mint> sinh_fps(int N) {
vc<mint> res(N);
FOR(i, 1, N, 2) res[i] = ifac(i);
return res;
}
#line 2 "YRS/mod/powertable.hpp"
#line 2 "YRS/pr/primtable.hpp"
// [0, LIM]
template <typename T = int>
vc<T> primtable(int LIM) {
++LIM;
constexpr int sz = 32768;
static int N = 2;
static vc<T> primes = {2}, sieve(sz + 1);
if (N < LIM) {
N = LIM;
primes = {2}, sieve.assign(sz + 1, 0);
const int R = LIM / 2;
primes.reserve(int(LIM / std::log(LIM) * 1.1));
vc<PII> cp;
for (int i = 3; i <= sz; i += 2) {
if (not sieve[i]) {
cp.ep(i, i * i / 2);
for (int j = i * i; j <= sz; j += 2 * i) sieve[j] = 1;
}
}
for (int L = 1; L <= R; L += sz) {
array<bool, sz> f {};
for (Z &[p, id] : cp)
for (int i = id; i < sz + L; id = (i += p)) f[i - L] = 1;
for (int i = 0; i < min(sz, R - L); ++i)
if (not f[i]) primes.ep((L + i) * 2 + 1);
}
}
int k = lb(primes, LIM + 1);
return {primes.begin(), primes.begin() + k};
}
#line 4 "YRS/mod/powertable.hpp"
// https://codeforces.com/contest/1194/problem/F
// x^0, ..., x^N
template <typename mint>
vc<mint> power_table_1(mint x, int N) {
vc<mint> f(N + 1, 1);
FOR(i, N) f[i + 1] = f[i] * x;
return f;
}
// 0^x, ..., N^x
template <typename mint>
vc<mint> power_table_2(ll x, ll N) {
vc<mint> f(N + 1, 1);
f[0] = mint(0).pow(x);
for (int p : primtable(N)) {
if (p > N) break;
mint xp = mint(p).pow(x);
ll pp = p;
while (pp < N + 1) {
ll i = pp;
while (i < N + 1) f[i] *= xp, i += pp;
pp *= p;
}
}
return f;
}
#line 9 "No_1100_Boxes.cpp"
#define tests 0
#define fl 0
#define DB 10
using mint = M99;
void Yorisou() {
INT(N, K);
vc<mint> h = power_table_2<mint>(N, K);
FOR(i, K + 1) h[i] *= ifac(i);
vc<mint> e(K + 1);
FOR(i, K + 1) e[i] = ifac(i);
h = fps_div(h, e);
print(convolution(h, sinh_fps<mint>(K + 1))[K] * fac(K));
}
#line 1 "YRS/aa/main.hpp"
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int T = 1;
if (fl) cerr.tie(0);
if (tests and not fl) IN(T);
for (int i = 0; i < T or fl; ++i) {
Yorisou();
if (fl and i % DB == 0) cerr << "Case: " << i << '\n';
}
return 0;
}
#line 24 "No_1100_Boxes.cpp"