結果
| 問題 | No.3437 [Cherry 8th Tune C] Silhouette |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2026-01-23 23:53:41 |
| 言語 | C# (.NET 10.0.101) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,123 bytes |
| 記録 | |
| コンパイル時間 | 11,036 ms |
| コンパイル使用メモリ | 170,596 KB |
| 実行使用メモリ | 81,736 KB |
| 最終ジャッジ日時 | 2026-01-24 00:00:17 |
| 合計ジャッジ時間 | 24,989 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | TLE * 1 -- * 10 |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (132 ミリ秒)。 main -> /home/judge/data/code/bin/Release/net10.0/main.dll main -> /home/judge/data/code/bin/Release/net10.0/publish/
ソースコード
#nullable enable
using System.Numerics;
#region
var (_input, _iter) = (Array.Empty<string>(), 0);
T I<T>() where T : IParsable<T>
{
while (_iter >= _input.Length) (_input, _iter) = (Console.ReadLine()!.Split(' '), 0);
return T.Parse(_input[_iter++], null);
}
#endregion
static T[] Range<T>(int n, Func<T> F) => Enumerable.Range(0, n).Select(_ => F()).ToArray();
ModInt Solve()
{
var ps = Range(3, () => Range(3, () => new Rational<Int128>(I<int>(), 1)));
var l = Range(3, () => new Rational<Int128>(I<int>(), 1));
foreach (var p in ps)
{
var pz = p[2];
var lz = l[2];
var dz = lz - pz;
var k = lz / dz;
for (var i = 0; i < 3; i++)
{
var pi = p[i];
var li = l[i];
var di = li - pi;
p[i] = li + di * k;
}
}
for (var i = 1; i < 3; i++) for (var j = 0; j < 3; j++)
{
ps[i][j] -= ps[0][j];
}
var area = (ps[1][0] * ps[2][1] - ps[1][1] * ps[2][0]) / (Int128)2;
if (area < (Int128)0) area = -area;
var a = (ModInt)(long)(area.P % (Int128)ModInt.Mod);
var b = (ModInt)(long)(area.Q % (Int128)ModInt.Mod);
return a / b;
}
var ans = Range(I<int>(), Solve);
Console.WriteLine(string.Join(Environment.NewLine, ans));
readonly record struct ModInt
{
public const int Mod = 998244353;
int V { get; init; }
public ModInt(long value)
{
var v = value % Mod;
if (v < 0) v += Mod;
V = (int)v;
}
static ModInt New(int value) => new(){ V = value };
public static implicit operator ModInt(long v) => new(v);
public static implicit operator int(ModInt modInt) => modInt.V;
public static ModInt AdditiveIdentity => New(0);
public static ModInt operator +(ModInt a, ModInt b)
{
var v = a.V + b.V;
if (v >= Mod) v -= Mod;
return New(v);
}
public ModInt AdditiveInverse()
{
if (V == 0) return AdditiveIdentity;
return New(Mod - V);
}
public static ModInt operator -(ModInt a, ModInt b)
{
var v = a.V - b.V;
if (v < 0) v += Mod;
return New(v);
}
public static ModInt MultiplicativeIdentity => New(1);
public static ModInt operator *(ModInt a, ModInt b) => New((int)((long)a.V * b.V % Mod));
public ModInt MultiplicativeInverse() => V == 0 ? throw new DivideByZeroException() : Power(V, Mod - 2, Mod);
public static ModInt operator /(ModInt a, ModInt b) => a * b.MultiplicativeInverse();
static long Power(long v, ulong p, long mod)
{
var (res, k) = (1L, v);
while (p > 0)
{
if ((p & 1) > 0) res = res * k % mod;
k = k * k % mod;
p >>= 1;
}
return res;
}
public ModInt Power(long p) => p < 0 ? MultiplicativeInverse().Power(-p) : Power(V, (ulong)p, Mod);
public override string ToString() => V.ToString();
}
readonly record struct Rational<T> :
IAdditiveIdentity<Rational<T>, Rational<T>>,
IAdditionOperators<Rational<T>, Rational<T>, Rational<T>>,
ISubtractionOperators<Rational<T>, Rational<T>, Rational<T>>,
IUnaryNegationOperators<Rational<T>, Rational<T>>,
IMultiplicativeIdentity<Rational<T>, Rational<T>>,
IMultiplyOperators<Rational<T>, Rational<T>, Rational<T>>,
IDivisionOperators<Rational<T>, Rational<T>, Rational<T>>,
IComparable<Rational<T>>,
IEqualityOperators<Rational<T>, Rational<T>, bool>,
IComparisonOperators<Rational<T>, Rational<T>, bool>
where T : IBinaryInteger<T>
{
public T P { get; private init; }
public T Q { get; private init; }
public Rational(T p, T q)
{
if (q == T.Zero) throw new DivideByZeroException();
if (q < T.Zero) (p, q) = (-p, -q);
var (x, y) = (T.Abs(p), q);
while (y > T.Zero) (x, y) = (y, x % y);
(P, Q) = (p / x, q / x);
}
public Rational(T p) { (P, Q) = (p, T.One); }
public static Rational<T> AdditiveIdentity => new(T.Zero);
public static Rational<T> MultiplicativeIdentity => new(T.One);
public static implicit operator Rational<T>(T i) => new(i);
public static Rational<T> operator -(Rational<T> r) => new(-r.P, r.Q);
public static Rational<T> operator +(Rational<T> r1, Rational<T> r2) => new(r1.P * r2.Q + r1.Q * r2.P, r1.Q * r2.Q);
public static Rational<T> operator -(Rational<T> r1, Rational<T> r2) => new(r1.P * r2.Q - r1.Q * r2.P, r1.Q * r2.Q);
public static Rational<T> operator *(Rational<T> r1, Rational<T> r2) => new(r1.P * r2.P, r1.Q * r2.Q);
public static Rational<T> operator /(Rational<T> r1, Rational<T> r2) => new(r1.P * r2.Q, r1.Q * r2.P);
public static bool operator <(Rational<T> r1, Rational<T> r2) => r1.CompareTo(r2) < 0;
public static bool operator <=(Rational<T> r1, Rational<T> r2) => r1.CompareTo(r2) <= 0;
public static bool operator >(Rational<T> r1, Rational<T> r2) => r1.CompareTo(r2) > 0;
public static bool operator >=(Rational<T> r1, Rational<T> r2) => r1.CompareTo(r2) >= 0;
public int CompareTo(Rational<T> r) => (P * r.Q).CompareTo(Q * r.P);
}