結果

問題 No.3333 Consecutive Power Sum (Large)
コンテスト
ユーザー apricity
提出日時 2026-01-26 22:22:24
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
TLE  
実行時間 -
コード長 16,712 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 4,788 ms
コンパイル使用メモリ 327,008 KB
実行使用メモリ 18,580 KB
最終ジャッジ日時 2026-01-26 22:22:49
合計ジャッジ時間 24,068 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 4 TLE * 1 -- * 58
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>

using namespace std;

#include <cstring>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>

namespace fastio {

#ifndef FAST_IO
#define FAST_IO
#endif

struct Pre {
    char num[10000][4];
    constexpr Pre() : num() {
        for (int i = 0; i < 10000; i++) {
            int n = i;
            for (int j = 3; j >= 0; j--) {
                num[i][j] = n % 10 | '0';
                n /= 10;
            }
        }
    }
} constexpr pre;

static constexpr int BUF_SZ = 1 << 18;
char *ibuf, obuf[BUF_SZ], outs[100];
int outi, obufi;

void __attribute__((constructor)) _c() {
    struct stat sb;
    fstat(0, &sb);
    ibuf = (char *)mmap(0, sb.st_size, PROT_READ, MAP_SHARED /*| MAP_POPULATE*/, 0, 0);
}

void flush() { write(1, obuf, obufi), obufi = 0; }

void input(char &c) { c = *ibuf++; }
void input(string &x) {
    x.clear();
    char c;
    do { input(c); } while (isspace(c));
    do { x += c, input(c); } while (!isspace(c));
}

template <typename T>
void input_integer(T &x) {
    char c;
    do { input(c); } while (c < '-');
    bool minus = 0;
    if constexpr (is_signed<T>::value || is_same_v<T, __int128>) {
        if (c == '-') { minus = 1, input(c); }
    }
    x = 0;
    while (c >= '0') { x = x * 10 + (c & 15), input(c); }
    if constexpr (is_signed<T>::value || is_same_v<T, __int128>) {
        if (minus) { x = -x; }
    }
}

template <typename T>
void input_real(T &x) { string s; input(s); x = stod(s); }

void input(int &x) { input_integer(x); }
void input(long long &x) { input_integer(x); }
void input(__int128 &x) { input_integer(x); }
void input(uint32_t &x) { input_integer(x); }
void input(uint64_t &x) { input_integer(x); }
void input(unsigned __int128 &x) { input_integer(x); }
void input(double &x) { input_real(x); }

template <class T>
void input(vector<T> &x) { for (auto &d : x) input(d); }
template <typename T, size_t N = 0>
void input(array<T, N> &x) { for (auto &d : x) input(d); }
template <class T, class U>
void input(pair<T, U> &p) { input(p.first), input(p.second); }
template <size_t N = 0, typename T>
void input_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        auto &x = std::get<N>(t);
        input(x);
        input_tuple<N + 1>(t);
    }
}
template <class... T>
void input(tuple<T...> &tpl) { input_tuple(tpl); }

void in() {}
template <class H, class... T>
void in(H &h, T &... t) { input(h), in(t...); }

void output(const char c) {
    if (obufi == BUF_SZ) flush();
    obuf[obufi++] = c;
}
void output(const string &s) { for (char c : s) output(c); }

template <typename T>
void output_integer(T x) {
    if (obufi > BUF_SZ - 100) flush();
    if (x < 0) { obuf[obufi++] = '-', x = -x; }
    for (outi = 96; x >= 10000; outi -= 4) {
        memcpy(outs + outi, pre.num[x % 10000], 4);
        x /= 10000;
    }
    if (x >= 1000) {
        memcpy(obuf + obufi, pre.num[x], 4);
        obufi += 4;
    }
    else if (x >= 100) {
        memcpy(obuf + obufi, pre.num[x] + 1, 3);
        obufi += 3;
    }
    else if(x >= 10) {
        int q = (x * 103) >> 10;
        obuf[obufi] = q | '0';
        obuf[obufi + 1] = (x - q * 10) | '0';
        obufi += 2;
    }
    else {
        obuf[obufi++] = x | '0';
    }
    memcpy(obuf + obufi, outs + outi + 4, 96 - outi);
    obufi += 96 - outi;
}

template <typename T>
void output_real(T x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << double(x);
    string s = oss.str();
    output(s);
}

void output(int x) { output_integer(x); }
void output(long long x) { output_integer(x); }
void output(size_t x) { output_integer(x); }
void output(__int128 x) { output_integer(x); }
void output(uint32_t x) { output_integer(x); }
// void output(uint64_t x) { output_integer(x); }
void output(unsigned __int128 x) { output_integer(x); }
void output(double x) { output_real(x); }
void output(long double x) { output_real(x); }

template <class T>
void output(const vector<T> &val) {
    size_t n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i) output(' ');
        output(val[i]);
    }
}

template <class T, class U>
void output(const pair<T, U> &val) {
    output(val.first); output(' '); output(val.second);
}
template <size_t N = 0, typename T>
void output_tuple(const T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        if constexpr (N > 0) { output(' '); }
        const auto x = std::get<N>(t);
        output(x);
        output_tuple<N+1>(t);
    }
}
template <class... T>
void output(tuple<T...> &tpl) { output_tuple(tpl); }
template <class T, size_t N>
void output(const array<T, N> &val) {
    size_t n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i) output(' ');
        output(val[i]);
    }
}

void out() { output('\n'); }
template <class H, class... T, char sep = ' '>
void out(H &&h, T &&... t) {
    output(h);
    if (sizeof...(T)) output(sep);
    out(t...);
}

void outr() {}
template <class H, class... T>
void outr(H &&h, T &&... t) {
    output(h);
    outr(t...);
}

void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio

using fastio::in;
using fastio::out;
#define SHOW(x) static_cast<void>(0)

using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;

#define rep1(a)          for(ll i = 0; i < a; i++)
#define rep2(i, a)       for(ll i = 0; i < a; i++)
#define rep3(i, a, b)    for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a)          for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a)       for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b)    for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
    T res = 0;
    for(auto &&a : v) res += a;
    return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
    if (v.empty()) return {};
    T cur = v.front();
    int cnt = 1;
    vector<pair<T,int>> res;
    for (int i = 1; i < (int)v.size(); i++) {
        if (cur == v[i]) cnt++;
        else {
            res.emplace_back(cur, cnt);
            cnt = 1; cur = v[i];
        }
    }
    res.emplace_back(cur, cnt);
    return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }

template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }

template <typename F>
i128 binary_search(F check, i128 ok, i128 ng, bool check_ok = true) {
    if (check_ok) assert(check(ok));
    while (ng - ok > 1) {
        i128 mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 60) {
    for (int _ = 0; _ < iter; _++) {
        double mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return (ok + ng) / 2;
}

// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
    assert(b > 0);
    ll c = a % b;
    return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
    ll q = div_floor(a,b);
    return {q, a - b*q};
}



const vc<int> witness{2,3,5,7,11,13,17,19,23,29,31,37,41};
i128 wp[13][80];

// mod < 2^{80}
i128 mul(i128 a, i128 b, i128 mod) {
    array<ll, 3> ar{}, br{};
    rep(i,3) ar[i] = (a>>(30*i)) & ((1<<30)-1);
    rep(i,3) br[i] = (b>>(30*i)) & ((1<<30)-1);
    i128 ans = ar[2]*br[2];
    ans = ((ans << 30) + ar[2]*br[1] + ar[1]*br[2]) % mod;
    ans = ((ans << 30) + ar[0]*br[2] + ar[1]*br[1] + ar[2]*br[0]) % mod;
    ans = ((ans << 30) + ar[0]*br[1] + ar[1]*br[0]) % mod;
    return ((ans << 30) + ar[0]*br[0]) % mod;
}

i128 pow_mod(i128 ai, i128 d, i128 mod) {
    i128 ret = 1;
    int x = 0;
    while(d){
        if(d&1) ret = mul(ret, wp[ai][x], mod);
        d >>= 1;
        x++;
    }
    return ret;
}

int trz(i128 x){
    static constexpr u64 msk = (u64)0-1;
    u64 h = x>>64, l = (u128)x&(u128)msk;
    if(l == 0) return countr_zero(h) + 64;
    return countr_zero(l);
}

i128 bgcd(i128 x, i128 y) {
    if(x == 0 or y == 0) return x + y;
    int n = trz(x), m = trz(y);
    x >>= n, y >>= m;
    while(x != y){
        if(x > y) x = (x-y) >> trz(x-y);
        else y = (y-x) >> trz(y-x);
    }
    return x << min(n,m);
}

bool miller_rabin(i128 n) {
    int s = 0, t;
    i128 d = n - 1;
    while (d % 2 == 0) d >>= 1, s++;
    rep(i,13){
        i128 a = witness[i];
        if (n <= a) return true;
        i128 x = pow_mod(i, d, n);
        if (x != 1) {
            for (t = 0; t < s; t++) {
                if (x == n-1) break;
                x = mul(x, x, n);
            }
            if (t == s) return false;
        }
    }
    return true;
}
i128 pollard_rho(i128 n) {
    if (n % 2 == 0) return 2;
    i128 c = 1;
    while(true) {
        auto f = [&] (i128 x) { return (mul(x,x,n)+c)%n; };
        i128 x = c, y = f(x);
        while (true) {
            i128 g = bgcd(y-x+n, n);
            if(g == 0 or g == n) break;
            if(g != 1){
                return g;
            }
            x = f(x);
            y = f(f(y));
        }
    }
}

vector<pair<i128, int>> factorize(i128 n) {
    vector<pair<i128, int>> res;
    while (n > 1 and !miller_rabin(n)) {
        ll p = pollard_rho(n);
        int e = 0;
        while (n % p == 0) {
            n /= p;
            e++;
        }
        res.emplace_back(p, e);
    }
    if (n > 1) res.emplace_back(n, 1);
    return res;
}

vector<i128> divisor(i128 n) {
    vector<i128> res{1};
    const auto pf = factorize(n);
    for (const auto& [p, e] : pf) {
        int s = res.size();
        for (int i = 0; i < s; i++) {
            i128 m = 1;
            for (int _ = 0; _ < e; _++) {
                m *= p;
                res.push_back(res[i]*m);
            }
        }
    }
    return res;
}

i128 n;
vc<tuple<int,i128,i128>> ans1, ans2, ans3;
constexpr i128 INF = (i128)1 << 80;

void precalc(){
    rep(i,13){
        wp[i][0] = witness[i];
        rep(j,1,80) wp[i][j] = mul(wp[i][j-1], wp[i][j-1], n);
    }
}

i128 sat_pow(i128 a, i128 e){
    i128 ret = 1;
    rep(_,e){
        if(ret >= (INF+a-1)/a) return INF;
        ret *= a;
        if(ret >= INF) return INF;
    }
    return ret;
}

void fix_e(int e){
    i128 s = 0;
    i128 r = 1;
    i128 llim = 1;
    while(sat_pow(llim, e) <= n) llim++;
    vc<i128> pw(llim);
    rep(i,1,llim) pw[i] = sat_pow(i,e);
    rep(l,1,llim){
        while(r < llim and s+pw[r] <= n) s += pw[r++];
        if(s == n) ans3.emplace_back(e,l,r-1);
        s -= pw[l];
    }
}

vc<i128> divs;

void e1(){
    vc<i128> div{divs};
    for(auto &x : divs) div.emplace_back(x*2);
    sort(ALL(div)); UNIQUE(div);
    for(auto d : div) {
        i128 x = d, y = n*2/d;
        if((x&1) != (y&1) and x <= y) ans1.emplace_back(1, (y-x+1)/2, (y+x-1)/2);
    }
}

void e2(){
    auto check = [&] (i128 len) {
        i128 l = binary_search([&](i128 x){
                return (x+len-1)*(x+len)*((x+len)*2-1) - (x-1)*x*(2*x-1) <= 6*n;
                }, 1, (i128)190000000, false);
        if((l+len-1)*(l+len)*((l+len)*2-1) - (l-1)*l*(2*l-1) == 6*n) ans2.emplace_back(2, l, l+len-1);
    };
    vc<i128> div{divs};
    for(auto &x : divs) div.emplace_back(x*2), div.emplace_back(x*3), div.emplace_back(x*6);
    sort(ALL(div)); UNIQUE(div);
    for(auto d : div) {
        check(d);
    }
}

void e3(){
    i128 s = 0;
    i128 r = 1;
    for(i128 l = 1; l <= 100000000; l++){
        while(s+r*r*r <= n) s += r*r*r, r++;
        if(s == n) ans3.emplace_back(3,l,r-1);
        s -= l*l*l;
    }
}

void solve() {
    string ns; in(ns);
    for(char c : ns) n = n * 10 + c-'0';
    precalc();
    divs = divisor(n);
    e1();
    e2();
    e3();
    rep(e,4,80) fix_e(e);
    out(ans1.size() + ans2.size() + ans3.size());
    sort(ALL(ans1));
    sort(ALL(ans2));
    for (auto x : ans1) out(x);
    for (auto x : ans2) out(x);
    for (auto x : ans3) out(x);
}

int main() {
    int tc = 1;
    // in(tc);
    while(tc--){
        solve();
    }
}
0