結果

問題 No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
コンテスト
ユーザー yorisou
提出日時 2026-01-27 11:01:01
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
WA  
実行時間 -
コード長 24,776 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 4,376 ms
コンパイル使用メモリ 303,076 KB
実行使用メモリ 25,012 KB
最終ジャッジ日時 2026-01-27 11:01:16
合計ジャッジ時間 15,498 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 37 WA * 8 TLE * 1 -- * 13
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#line 1 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
#define YRSD
#line 2 "YRS/all.hpp"

#line 2 "YRS/aa/head.hpp"

#include <iostream>
#include <algorithm>

#include <array>
#include <bitset>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <string>
#include <tuple>

#include <bit>
#include <chrono>
#include <functional>
#include <iomanip>
#include <utility>
#include <type_traits>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <limits>
#include <ranges>

#define TE template <typename T>
#define TES template <typename T, typename ...S>
#define Z auto
#define ep emplace_back
#define eb emplace
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()

#define OV4(a, b, c, d, e, ...) e
#define FOR1(a) for (int _ = 0; _ < (a); ++_)
#define FOR2(i, a) for (int i = 0; i < (a); ++i)
#define FOR3(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR4(i, a, b, c) for (int i = (a); i < (b); i += (c))
#define FOR(...) OV4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR1_R(a) for (int _ = (a) - 1; _ >= 0; --_)
#define FOR2_R(i, a) for (int i = (a) - 1; i >= 0; --i)
#define FOR3_R(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define FOR4_R(i, a, b, c) for (int i = (b) - 1; i >= (a); i -= (c))
#define FOR_R(...) OV4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (int t = (s); t > -1; t = (t == 0 ? -1 : (t - 1) & s))

#define sort ranges::sort

using namespace std;

TE using vc = vector<T>;
TE using vvc = vc<vc<T>>;
TE using T1 = tuple<T>;
TE using T2 = tuple<T, T>;
TE using T3 = tuple<T, T, T>;
TE using T4 = tuple<T, T, T, T>;
TE using max_heap = priority_queue<T>;
TE using min_heap = priority_queue<T, vc<T>, greater<T>>;
using u8 = unsigned char; using uint = unsigned int; using ll = long long;      using ull = unsigned long long;
using ld = long double;   using i128 = __int128;     using u128 = __uint128_t;  using f128 = __float128;
using u16 = uint16_t;
using PII = pair<int, int>;   using PLL = pair<ll, ll>;

#ifdef YRSD
constexpr bool dbg = 1;
#else
constexpr bool dbg = 0;
#endif
#line 2 "YRS/IO/IO.hpp"

istream &operator>>(istream &I, i128 &x) {
  static string s;
  I >> s;
  int f = s[0] == '-';
  x = 0;
  const int N = (int)s.size();
  FOR(i, f, N) x = x * 10 + s[i] - '0';
  if (f) x = -x;
  return I;
}
ostream &operator<<(ostream &O, i128 x) {
  static string s;
  s.clear();
  bool f = x < 0;
  if (f) x = -x;
  while (x) s += '0' + x % 10, x /= 10;
  if (s.empty()) s += '0';
  if (f) s += '-';
  reverse(all(s));
  return O << s;
}
istream &operator>>(istream &I, f128 &x) {
  static string s;
  I >> s, x = stold(s);
  return I;
}
ostream &operator<<(ostream &O, const f128 x) { return O << ld(x); }
template <typename ...S> istream &operator>>(istream &I, tuple<S...> &t) {
  return apply([&I](Z &...args) { ((I >> args), ...); }, t), I;
}
template <typename T, typename U>
istream &operator>>(istream &I, pair<T, U> &x) {
  return I >> x.fi >> x.se;
}
template <typename T, typename U>
ostream &operator<<(ostream &O, const pair<T, U> &x) {
  return O << x.fi << ' ' << x.se;
}
template <typename T>
requires requires(T &c) { begin(c); end(c); } and 
                          (not is_same_v<decay_t<T>, string>)
istream &operator>>(istream &I, T &c) {
  for (Z &e : c) I >> e;
  return I;
}
template <typename T>requires requires(const T &c) { begin(c); end(c); } and 
  (not is_same_v<decay_t<T>, const char*>) and 
  (not is_same_v<decay_t<T>, string>) and 
  (not is_array_v<remove_reference_t<T>> or 
   not is_same_v<remove_extent_t<remove_reference_t<T>>, char>)
ostream &operator<<(ostream &O, const T &a) {
  if (a.empty()) return O;
  Z i = a.begin();
  O << *i++;
  for (; i != a.end(); ++i) O << ' ' << *i;
  return O;
}
void IN() {}
TE void IN(T &x, Z &...s) { cin >> x, IN(s...); }
void print() { cout << '\n'; }
TES void print(T &&x, S &&...y) {
  cout << x;
  if constexpr (sizeof...(S)) cout << ' ';
  print(forward<S>(y)...);
}
void put() { cout << ' '; }
TES void put(T &&x, S &&...y) {
  cout << x;
  if constexpr (sizeof...(S)) cout << ' ';
  put(forward<S>(y)...);
}

#define INT(...)  int    __VA_ARGS__; IN(__VA_ARGS__)
#define LL(...)   ll     __VA_ARGS__; IN(__VA_ARGS__)
#define ULL(...)  ull    __VA_ARGS__; IN(__VA_ARGS__)
#define I128(...) i128   __VA_ARGS__; IN(__VA_ARGS__)
#define STR(...)  string __VA_ARGS__; IN(__VA_ARGS__)
#define CH(...)   char   __VA_ARGS__; IN(__VA_ARGS__)
#define REAL(...) RE     __VA_ARGS__; IN(__VA_ARGS__)
#define VEC(T, a, n) vc<T> a(n); IN(a)
#define VVEC(T, a, n, m) vvc<T> a(n, vc<T>(m)); IN(a)

void YES(bool o = 1) { print(o ? "YES" : "NO"); }
void Yes(bool o = 1) { print(o ? "Yes" : "No"); }
void yes(bool o = 1) { print(o ? "yes" : "no"); }
void NO(bool o = 1) { YES(not o); }
void No(bool o = 1) { Yes(not o); }
void no(bool o = 1) { yes(not o); }
void ALICE(bool o = 1) { print(o ? "ALICE" : "BOB"); }
void Alice(bool o = 1) { print(o ? "Alice" : "Bob"); }
void alice(bool o = 1) { print(o ? "alice" : "bob"); }
void BOB(bool o = 1) { ALICE(not o); }
void Bob(bool o = 1) { Alice(not o); }
void bob(bool o = 1) { alice(not o); }
void POSSIBLE(bool o = 1) { print(o ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool o = 1) { print(o ? "Possible" : "Impossible"); }
void possible(bool o = 1) { print(o ? "possible" : "impossible"); }
void IMPOSSIBLE(bool o = 1) { POSSIBLE(not o); }
void Impossible(bool o = 1) { Possible(not o); }
void impossible(bool o = 1) { possible(not o); }
void TAK(bool o = 1) { print(o ? "TAK" : "NIE"); }
void NIE(bool o = 1) { TAK(not o); }
#line 5 "YRS/all.hpp"

constexpr ld pi = numbers::pi;
TE constexpr T inf = numeric_limits<T>::max();
template <> constexpr i128 inf<i128> = i128(numeric_limits<ll>::max()) * 2'000'000'000'000'000'000;
template <typename T, typename U>
constexpr pair<T, U> inf<pair<T, U>> = {inf<T>, inf<U>};

TE constexpr static inline int pc(T x) { return popcount(make_unsigned_t<T>(x)); }
constexpr static inline ll len(const Z &a) { return a.size(); }

void reverse(Z &a) { std::reverse(all(a)); }

void unique(Z &a) {
  sort(a);
  a.erase(unique(all(a)), a.end());
}
TE vc<int> inverse(const vc<T> &a) {
  int N = len(a);
  vc<int> b(N, -1);
  FOR(i, N) if (a[i] != -1) b[a[i]] = i;
  return b;
}

Z QMAX(const Z &a) { return *max_element(all(a)); }
Z QMIN(const Z &a) { return *min_element(all(a)); }
constexpr bool chmax(Z &a, const Z &b) { return (a < b ? a = b, true : false); }
constexpr bool chmin(Z &a, const Z &b) { return (a > b ? a = b, true : false); }

template <typename T, typename U>
constexpr static pair<T, U> operator-(const pair<T, U> &p) {
  return pair<T, U>(-p.fi, -p.se);
}

vc<int> argsort(const Z &a) {
  vc<int> I(len(a));
  iota(all(I), 0);
  sort(I, [&](int i, int k) { return a[i] < a[k] or (a[i] == a[k] and i < k); });
  return I;
}
TE vc<T> rearrange(const vc<T> &a, const vc<int> &I) {
  int N = len(I);
  vc<T> b(N);
  FOR(i, N) b[i] = a[I[i]];
  return b;
}
template <int off = 1, typename T> 
vc<T> pre_sum(const vc<T> &a) {
  int N = len(a);
  vc<T> c(N + 1);
  FOR(i, N) c[i + 1] = c[i] + a[i];
  if constexpr (off == 0) c.erase(c.begin());
  return c;
}

TE constexpr static int topbit(T x) {
  if (x == 0) return - 1;
  if constexpr (sizeof(T) <= 4) return 31 - __builtin_clz(x);
  else return 63 - __builtin_clzll(x);
}
TE constexpr static int lowbit(T x) {
  if (x == 0) return -1;
  if constexpr (sizeof(T) <= 4) return __builtin_ctz(x);
  else return __builtin_ctzll(x);
}

TE constexpr T floor(T x, T y) { return x / y - (x % y and (x ^ y) < 0); }
TE constexpr T ceil(T x, T y) { return floor(x + y - 1, y); }
TE constexpr pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return pair{q, x - q * y};
}
template <typename T = ll>
T SUM(const Z &v) {
  return accumulate(all(v), T(0));
}
int lb(const Z &a, Z x) { return lower_bound(all(a), x) - a.begin(); }
int ub(const Z &a, Z x) { return upper_bound(all(a), x) - a.begin(); }

template <bool ck = true>
ll bina(Z F, ll l, ll r) {
  if constexpr (ck) assert(F(l));
  while (abs(l - r) > 1) {
    ll x = (r + l) >> 1;
    (F(x) ? l : r) = x;
  }
  return l;
}
TE T bina_real(const Z &F, T l, T r, int c = 100) {
  while (c--) {
    T m = (l + r) / 2;
    (F(m) ? l : r) = m;
  }
  return (l + r) / 2;
}
Z pop(Z &s) {
  if constexpr (requires { s.pop_back(); }) {
    Z x = s.back();
    return s.pop_back(), x;
  } else if constexpr (requires { s.top(); }) {
    Z x = s.top();
    return s.pop(), x;
  } else {
    Z x = s.front();
    return s.pop(), x;
  }
}
void setp(int x) { cout << fixed << setprecision(x); }

TE inline void sh(vc<T> &a, int N) {
  a.resize(N, T(0));
}
#line 1 "YRS/debug.hpp"
#ifdef YRSD
void DBG() { cerr << "]" << endl; }
TES void DBG(T &&x, S &&...y) {
  cerr << x;
  if constexpr (sizeof...(S)) cerr << ", ";
  DBG(forward<S>(y)...);
}
#define debug(...) cerr << "[" << __LINE__ << "]: [" #__VA_ARGS__ "] = [", DBG(__VA_ARGS__)
void ERR() { cerr << endl; }
TES void ERR(T &&x, S &&...y) {
  cerr << x;
  if constexpr (sizeof...(S)) cerr << ", ";
  ERR(forward<S>(y)...);
}
#define err(...) cerr << "[" << __LINE__ << "]: ", ERR(__VA_ARGS__)
#define asser assert
#else
#define debug(...) void(0721)
#define err(...)   void(0721)
#define asser(...) void(0721)
#endif
#line 4 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
// #include "YRS/IO/fast_io.hpp"
// #include "YRS/random/rng.hpp"
#line 2 "YRS/flow/BM.hpp"

#line 2 "YRS/g/01coloring.hpp"

#line 2 "YRS/ds/unionfind/dsu.hpp"

struct dsu {
  int c;
  vc<int> fa;
  dsu(int N = 0) : c(N), fa(N, -1) {}

  int f(int x) {
    while (fa[x] >= 0) {
      int p = fa[fa[x]];
      if (p < 0) return fa[x];
      x = fa[x] = p;
    }
    return x;
  }

  int operator[](int x) { return f(x); }

  bool merge(int x, int y) {
    x = f(x), y = f(y);
    if (x == y) return false;
    if (fa[x] > fa[y]) swap(x, y);
    fa[x] += fa[y];
    fa[y] = x;
    --c;
    return true;
  }

  // set fa[y] = x;
  bool set(int x, int y) {
    x = f(x), y = f(y);
    if (x == y) return false;
    fa[x] += fa[y];
    fa[y] = x;
    --c;
    return true;
  }

  int size(int x) { return -fa[f(x)]; }

  int count() const { return c; }

  bool same(int x, int y) { return f(x) == f(y); }

  void build(int N) { fa.assign(N, -1), c = N; }

  void reset() { std::fill(all(fa), -1), c = len(fa); }

  vc<vc<int>> get_group() {
    const int N = len(fa);
    vc<vc<int>> v(N), s;
    FOR(i, N) v[f(i)].ep(i);
    FOR(i, N) if (not v[i].empty()) s.ep(v[i]);
    return s;
  }

  void pr() {
    const int N = len(fa);
    vc<int> res(N);
    FOR(i, N) res[i] = f(i);
    print("fa:", res);
  }
};
#line 2 "YRS/g/Basic.hpp"

#line 2 "YRS/ds/basic/hashmap.hpp"

template <typename T>
struct hash_map {

  hash_map(uint N = 0) { build(N); }

  void build(uint N) {
    uint k = 8;
    while (k < (N << 1)) k <<= 1;
    ls = k >> 1, msk = k - 1;
    ke.resize(k), val.resize(k), vis.assign(k, 0);
  }

  void clear() {
    fill(all(vis), 0);
    ls = (msk + 1) >> 1;
  }

  int size() const { return vis.size() / 2 - ls; }

  int id(ull k) const {
    int i = hash(k);
    while (vis[i] and ke[i] != k) i = (i + 1) & msk;
    return i;
  }

  T &operator[](ull k) {
    if (ls == 0) extend();
    int i = id(k);
    if (not vis[i]) {
      vis[i] = 1;
      ke[i] = k;
      val[i] = T {};
      --ls;
    }
    return val[i];
  }

  T get(ull k, T fail) const {
    int i = id(k);
    return (vis[i] ? val[i] : fail);
  }

  bool contains(ull k) const {
    int i = id(k);
    return vis[i] and ke[i] == k;
  }

  // f(ke, val);
  template <typename F>
  void enumerate_all(F f) const {
    const int N = len(vis);
    FOR(i, N) if (vis[i]) f(ke[i], val[i]);
  }

 private:
  uint ls, msk;
  vc<ull> ke;
  vc<T> val;
  vc<u8> vis;

  ull hash(ull x) const {
    static const ull FIXED_RANDOM =
        std::chrono::steady_clock::now().time_since_epoch().count();
    x += FIXED_RANDOM;
    x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
    x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
    return (x ^ (x >> 31)) & msk;
  }

  void extend() {
    vc<pair<ull, T>> dat;
    const int N = len(vis);
    dat.reserve(N / 2 - ls);
    FOR(i, N) if (vis[i]) dat.ep(ke[i], val[i]);
    build(dat.size() << 1);
    for (Z &[a, b] : dat) (*this)[a] = b;
  }
};
#line 4 "YRS/g/Basic.hpp"

// https://www.luogu.com.cn/problem/P5318

TE struct edge {
  int f, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using ee = edge<T>;
  vc<ee> edges;
  vc<int> indptr;
  vc<ee> csr_edges;
  
  vc<int> vec_deg, vec_indeg, vec_outdeg;
  bool prepared;

  struct out_going_edges {
    const graph *G;
    int l, r;
    out_going_edges(const graph *G, int l, int r) : G(G), l(l), r(r) {}
    const ee *begin() const {
      if (l == r) return 0;
      return &G->csr_edges[l];
    }
    const ee *end() const {
      if (l == r) return 0;
      return &G->csr_edges[r];
    }
  };

  bool is_prepared() { return prepared; }

  graph() : N(0), M(0), prepared(false) {}
  graph(int N) : N(N), M(0), prepared(false) {}

  void build(int s) {
    N = s, M = 0, prepared = false;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vec_deg.clear();
    vec_indeg.clear();
    vec_outdeg.clear();
  }

  void add(int f, int t, T cost = 1, int i = -1) {
    asser(not prepared);
    asser(-1 < f and -1 < t and t < N and f < N);
    if (i == -1) i = M;
    Z e = ee({f, t, cost, i});
    edges.ep(e);
    ++M;
  }

  template <bool wt = false, int off = 1>
  void read_tree() {
    read_graph<wt, off>(N - 1);
  }
  template <bool wt = false, int off = 1>
  void read_graph(int M) {
    edges.reserve(M * (directed ? 1 : 2));
    FOR(M) {
      INT(x, y);
      x -= off, y -= off;
      if constexpr (not wt) {
        add(x, y);
      } else {
        T w;
        IN(w);
        add(x, y, w);
      }
    }
    build();
  }

  void build() {
    asser(not prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (Z &&e : edges) {
      indptr[e.f + 1]++;
      if constexpr (not directed) indptr[e.to + 1]++;
    }
    FOR(i, N) indptr[i + 1] += indptr[i];
    Z counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (Z &&e : edges) {
      csr_edges[counter[e.f]++] = e;
      if constexpr (not directed) {
        csr_edges[counter[e.to]++] = ee({e.to, e.f, e.cost, e.id});
      }
    }
  }

  out_going_edges operator[](int i) const {
    asser(prepared);
    return {this, indptr[i], indptr[i + 1]};
  }

  vc<int> deg_array() {
    if (vec_deg.empty()) calc_dag();
    return vec_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vec_indeg.empty()) calc_deg_inout();
    return {vec_indeg, vec_outdeg};
  }

  int deg(int i) {
    if (vec_deg.empty()) calc_dag();
    return vec_deg[i];
  }

  int in_deg(int i) {
    if (vec_indeg.empty()) calc_deg_inout();
    return vec_indeg[i];
  }

  int out_deg(int i) {
    if (vec_outdeg.empty()) calc_deg_inout();
    return vec_outdeg[i];
  }

  vc<int> nidx;
  vc<u8> vis_e;

  // 使G中的顶点V[i]在新图表中为i
  // {G, es}
  // sum(deg(v))的计算量
  // 注意它可能大于新图表的n+M
  graph<T, directed> rearrange(vc<int> v, bool keep_eid = false) {
    if (len(nidx) != N) nidx.assign(N, -1);
    int N = len(v);
    graph<T, directed> g(N);
    vc<int> his;
    FOR(i, N) {
      for (Z &&e : (*this)[v[i]]) {
        if (len(vis_e) <= e.id) vis_e.resize(e.id + 1);
        if (vis_e[e.id]) continue;
        int f = e.f, to = e.to;
        if (nidx[f] != -1 and nidx[to] != -1) {
          his.ep(e.id);
          vis_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          g.add(nidx[f], nidx[to], e.cost, eid);
        }
      }
    }
    FOR(i, N) nidx[v[i]] = -1;
    for (Z &&i : his) vis_e[i] = 0;
    return g.build(), g;
  }

  graph<T, directed> to_directed_tree(int rt = -1) {
    if (rt == -1) rt = 0;
    assert(not is_directed and prepared and M == N - 1);
    graph<T, true> g;
    vc<int> fa(N, -1);
    Z f = [&](Z &f, int n) -> void {
      for (Z &e : (*this)[n]) {
        if (e.to == fa[n]) continue;
        fa[e.to] = n;
        f(f, e.to);
      }
    };
    f(f, rt);
    for (Z &&e : edges) {
      int f = e.f, to = e.to;
      if (fa[f] == to) swap(f, to);
      g.add(f, to, e.cost);
    }
    return g.build(), g;
  }

  hash_map<int> mp;
  int get_eid(ull x, ull y) {
    if (mp.size() == 0) {
      mp.build(N - 1);
      for (Z &&e : edges) {
        ull x = e.f, y = e.to;
        ull k = to_eid_key(x, y);
        mp[k] = e.id;
      }
    }
    return mp.get(to_eid_key(x, y), -1);
  }

  ull to_eid_key(ull x, ull y) {
    if (not directed and x > y) swap(x, y);
    return x * N + y;
  }

  graph reverse_graph() const {
    static_assert(graph::is_directed);
    graph res(N);
    for (Z &&[f, t, w, id] : edges) {
      res.add(t, f, w, id);
    }
    return res;
  }

 private:
  void calc_dag() {
    assert(vec_deg.empty());
    vec_deg.resize(N);
    for (Z &&e : edges) {
      ++vec_deg[e.f];
      ++vec_deg[e.to];
    }
  }
  void calc_deg_inout() {
    assert(vec_indeg.empty());
    vec_indeg.resize(N);
    vec_outdeg.resize(N);
    for (Z &&e : edges) {
      vec_indeg[e.to]++;
      vec_outdeg[e.f]++;
    }
  }
};
#line 5 "YRS/g/01coloring.hpp"

template <typename GT>
vc<int> coloring01(GT &g) {
  assert(g.is_prepared());

  int N = g.N;
  dsu fa(N << 1);
  for (Z &&[f, t, w, i] : g.edges) {
    fa.merge(f, t + N), fa.merge(f + N, t);
  }

  vc<int> c(N << 1, -1);
  FOR(i, N) if (fa[i] == i and c[fa[i]] < 0) c[fa[i]] = 0, c[fa[i + N]] = 1;

  FOR(i, N) if (fa[i] == fa[i + N]) return {};
  FOR(i, N) c[i] = c[fa[i]];
  return c.resize(N), c;
}
#line 2 "YRS/g/scc.hpp"

#line 4 "YRS/g/scc.hpp"

template <typename GT>
pair<int, vc<int>> scc_id(GT &g) {
  static_assert(GT::is_directed);
  assert(g.is_prepared());
  int N = g.N, t = 0, c = 0;
  vc<int> dfn(N), low(N), id(N), s;

  Z f = [&](Z &f, int n) -> void {
    dfn[n] = low[n] = ++t;
    s.ep(n);
    for (Z &&e : g[n]) {
      if (dfn[e.to]) chmin(low[n], dfn[e.to]);
      else f(f, e.to), chmin(low[n], low[e.to]);
    }
    if (dfn[n] == low[n]) {
      int x = pop(s);
      for (; x != n; x = pop(s)) id[x] = c, dfn[x] = N;
      id[x] = c++, dfn[x] = N;
    }
  };
  FOR(i, N) if (not dfn[i]) f(f, i);
  FOR(i, N) id[i] = c - id[i] - 1; // del
  return {c, id};
}

vc<vc<int>> get_scc_group(int c, const vc<int> &id) {
  vc<vc<int>> scc(c);
  int N = len(id);
  vc<int> sz(c); // del
  FOR(i, N) ++sz[id[i]]; // del
  FOR(i, c) scc[i].reserve(sz[i]); // del
  FOR(i, N) scc[id[i]].ep(i);
  return scc;
}

template <typename GT>
graph<int, true> scc_dag(GT &g, int c, vc<int> &id) {
  assert(g.is_prepared());
  graph<int, true> ng(c);
  vc<ull> es;
  for (Z &&e : g.edges) {
    int x = id[e.f], y = id[e.to];
    if (x == y) continue;
    es.ep(ull(x) << 32 | y);
  }
  unique(es);
  ng.edges.reserve(len(es)); // del
  for (ll s : es) ng.add(s >> 32, s & uint(-1));
  return ng.build(), ng;
}
#line 2 "YRS/ds/basic/queue.hpp"

// queue_vector_ver
template <typename T>
struct Mqueue {
  int l;
  vc<T> q;

  Mqueue() : l(0) {}
  Mqueue(int N) : l(0) { q.reserve(N); }
  Mqueue(const vc<T> &q) : l(0), q(q) {}

  T &operator[](int x) { 
    if (x < 0) return q.end()[x];
    return q[l + x]; 
  }
  const T &operator[](int x) const { 
    if (x < 0) return q.end()[x];
    return q[l + x]; 
  }

  T &front() { return q[l]; }
  const T &front() const { return q[l]; }
  T &back() { return q.back(); }
  const T &back() const { return q.back(); }

  int size() const { return len(q) - l; }
  bool empty() const { return l == len(q); }
  T pop() { return q[l++]; }
  void push(const T &x) { push_back(x); }
  void push_back(const T& v) { q.push_back(v); }
  void pop_back() { q.pop_back(); }
  
  void clear() { q.clear(), l = 0; }
  vc<T>::iterator end() { return q.end(); }
  template <typename... S>
  void emplace(S &&...args) { q.ep(std::forward<S>(args)...); }
};
#define queue Mqueue
#line 7 "YRS/flow/BM.hpp"

template <typename GT>
struct B_matching {
  int N;
  GT &g;
  vc<int> col, dis, mat;
  vc<u8> vis;

  B_matching(GT &g) : N(g.N), g(g), dis(N, -1), mat(N, -1) {
    col = coloring01(g);
    if (N > 0) assert(not col.empty());
    while (1) {
      bfs();
      vis.assign(N, 0);
      int f = 0;
      FOR(i, N) if (not col[i] and mat[i] == -1 and dfs(i)) ++f;
      if (not f) break;
    }
  }
  B_matching(GT &g, const vc<int> &col)
      : N(g.N), g(g), col(col), dis(N, -1), mat(N, -1) {
    if (N > 0) assert(not col.empty());
    while (1) {
      bfs();
      fill(all(vis), 0);
      int f = 0;
      FOR(i, N) if (not col[i] and mat[i] == -1 and dfs(i)) ++f;
      if (not f) break;
    }
  }

  void bfs() {
    fill(all(dis), -1);
    queue<int> q;
    FOR(i, N) if (not col[i] and mat[i] == -1) q.eb(i), dis[i] = 0;
    while (not q.empty()) {
      int n = pop(q);
      for (Z &&e : g[n]) {
        dis[e.to] = 0;
        int w = mat[e.to];
        if (w != -1 and dis[w] == -1) dis[w] = dis[n] + 1, q.eb(w);
      }
    }
  }
  bool dfs(int n) {
    vis[n] = 1;
    for (Z &&e : g[n]) {
      int w = mat[e.to];
      if (w == -1 or (not vis[w] and dis[w] == dis[n] + 1 and dfs(w))) {
        mat[e.to] = n, mat[n] = e.to;
        return true;
      }
    }
    return false;
  }
  vc<PII> matching() {
    vc<PII> res;
    FOR(i, N) if (i < mat[i]) res.ep(i, mat[i]);
    return res;
  }

  // 选最少的点,满足每条边至少有一个端点被选。最小点覆盖 = 最大匹配
  vc<int> vertex_cover() {
    vc<int> res;
    FOR(i, N) if (col[i] ^ (dis[i] == -1)) res.ep(i);
    return res;
  }
  vc<int> independent_set() {
    vc<int> res;
    FOR(i, N) if (not(col[i] ^ (dis[i] == -1))) res.ep(i);
    return res;
  }
  vc<int> edge_cover() {
    vc<u8> vis(N);
    vc<int> res;
    for (Z &&[f, t, c, id] : g.edges) {
      if (vis[f] or vis[t]) continue;
      if (mat[f] == t) res.ep(id), vis[f] = vis[t] = 1;
    }
    for (Z &&[f, t, c, id] : g.edges) {
      if (not vis[f]) res.ep(id), vis[f] = 1;
      if (not vis[t]) res.ep(id), vis[t] = 1;
    }
    return sort(res), res;
  }
  /* Dulmage–Mendelsohn 分解
  https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition
  http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
  https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html
  - 可以作为最大匹配的条件:具有相同的 W
  - 边 uv 必定被使用:具有相同 W 的边唯一
  - 从 color=0 到 color=1 的边:W[l] <= W[r]
  - color=0 的点必定被使用:W=1,2,...,K
  - color=1 的点必定被使用:W=0,1,...,K-1
  */
  pair<int, vc<int>> DM_decomposition() {
    // 从非饱和点开始的搜索
    vc<int> w(N, -1), q;
    Z add = [&](int n, int x) -> void {
      if (w[n] == -1) {
        w[n] = x;
        q.ep(n);
      }
    };
    FOR(i, N) if (mat[i] == -1 and col[i] == 0) add(i, 0);
    FOR(i, N) if (mat[i] == -1 and col[i] == 1) add(i, inf<int>);

    while (not q.empty()) {
      int n = pop(q);
      if (mat[n] != -1) add(mat[n], w[n]);
      if (col[n] == 0 and w[n] == 0) 
        for (Z &&e : g[n]) add(e.to, w[n]);
      if (col[n] == 1 and w[n] == inf<int>) 
        for (Z &&e : g[n]) add(e.to, w[n]);
    }

    // 从剩余的点构成的图中进行强连通分量分解
    vc<int> v;
    FOR(i, N) if (w[i] == -1) v.ep(i);
    int n = len(v);
    graph<int, true> ng(n);
    FOR(i, n) {
      int x = v[i];
      if (mat[x] != -1) ng.add(i, lb(v, mat[x]));
      if (col[x] == 0) {
        for (Z &&e : g[x]) {
          if (w[e.to] != -1 or e.to == mat[x]) continue;
          ng.add(i, lb(v, e.to));
        }
      }
    }
    ng.build();
    Z [c, id] = scc_id(ng);
    ++c;
    FOR(i, n) w[v[i]] = id[i];
    FOR(i, N) if (w[i] == inf<int>) w[i] = c;
    return {c, w};
  }
};
#line 7 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"

#define tests 0
#define fl 0
#define DB 10
void Yorisou() {
  INT(L, R, M);
  VEC(PII, e, M);
  for (Z &[x, y] : e) {
    --x, --y;
    y += L;
  }
  graph g(L + R);
  for (Z &&[x, y] : e) g.add(x, y);
  g.build();
  B_matching f(g);
  Z [k, w] = f.DM_decomposition();
  for (Z [x, y] : e) Yes(w[x] == w[y]);
}
#line 1 "YRS/aa/main.hpp"
int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  int T = 1;
  if (fl) cerr.tie(0);
  if (tests and not fl) IN(T);
  for (int i = 0; i < T or fl; ++i) {
    Yorisou();
    if (fl and i % DB == 0) cerr << "Case: " << i << '\n';
  }
  return 0;
}
#line 26 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
0