結果
| 問題 | No.1745 Selfish Spies 2 (à la Princess' Perfectionism) |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2026-01-27 11:13:29 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 151 ms / 5,000 ms |
| コード長 | 24,847 bytes |
| 記録 | |
| コンパイル時間 | 4,277 ms |
| コンパイル使用メモリ | 303,072 KB |
| 実行使用メモリ | 25,376 KB |
| 最終ジャッジ日時 | 2026-01-27 11:13:40 |
| 合計ジャッジ時間 | 9,730 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 59 |
ソースコード
#line 1 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
#define YRSD
#line 2 "YRS/all.hpp"
#line 2 "YRS/aa/head.hpp"
#include <iostream>
#include <algorithm>
#include <array>
#include <bitset>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <string>
#include <tuple>
#include <bit>
#include <chrono>
#include <functional>
#include <iomanip>
#include <utility>
#include <type_traits>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <limits>
#include <ranges>
#define TE template <typename T>
#define TES template <typename T, typename ...S>
#define Z auto
#define ep emplace_back
#define eb emplace
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define OV4(a, b, c, d, e, ...) e
#define FOR1(a) for (int _ = 0; _ < (a); ++_)
#define FOR2(i, a) for (int i = 0; i < (a); ++i)
#define FOR3(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR4(i, a, b, c) for (int i = (a); i < (b); i += (c))
#define FOR(...) OV4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR1_R(a) for (int _ = (a) - 1; _ >= 0; --_)
#define FOR2_R(i, a) for (int i = (a) - 1; i >= 0; --i)
#define FOR3_R(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define FOR4_R(i, a, b, c) for (int i = (b) - 1; i >= (a); i -= (c))
#define FOR_R(...) OV4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (int t = (s); t > -1; t = (t == 0 ? -1 : (t - 1) & s))
#define sort ranges::sort
using namespace std;
TE using vc = vector<T>;
TE using vvc = vc<vc<T>>;
TE using T1 = tuple<T>;
TE using T2 = tuple<T, T>;
TE using T3 = tuple<T, T, T>;
TE using T4 = tuple<T, T, T, T>;
TE using max_heap = priority_queue<T>;
TE using min_heap = priority_queue<T, vc<T>, greater<T>>;
using u8 = unsigned char; using uint = unsigned int; using ll = long long; using ull = unsigned long long;
using ld = long double; using i128 = __int128; using u128 = __uint128_t; using f128 = __float128;
using u16 = uint16_t;
using PII = pair<int, int>; using PLL = pair<ll, ll>;
#ifdef YRSD
constexpr bool dbg = 1;
#else
constexpr bool dbg = 0;
#endif
#line 2 "YRS/IO/IO.hpp"
istream &operator>>(istream &I, i128 &x) {
static string s;
I >> s;
int f = s[0] == '-';
x = 0;
const int N = (int)s.size();
FOR(i, f, N) x = x * 10 + s[i] - '0';
if (f) x = -x;
return I;
}
ostream &operator<<(ostream &O, i128 x) {
static string s;
s.clear();
bool f = x < 0;
if (f) x = -x;
while (x) s += '0' + x % 10, x /= 10;
if (s.empty()) s += '0';
if (f) s += '-';
reverse(all(s));
return O << s;
}
istream &operator>>(istream &I, f128 &x) {
static string s;
I >> s, x = stold(s);
return I;
}
ostream &operator<<(ostream &O, const f128 x) { return O << ld(x); }
template <typename ...S> istream &operator>>(istream &I, tuple<S...> &t) {
return apply([&I](Z &...args) { ((I >> args), ...); }, t), I;
}
template <typename T, typename U>
istream &operator>>(istream &I, pair<T, U> &x) {
return I >> x.fi >> x.se;
}
template <typename T, typename U>
ostream &operator<<(ostream &O, const pair<T, U> &x) {
return O << x.fi << ' ' << x.se;
}
template <typename T>
requires requires(T &c) { begin(c); end(c); } and
(not is_same_v<decay_t<T>, string>)
istream &operator>>(istream &I, T &c) {
for (Z &e : c) I >> e;
return I;
}
template <typename T>requires requires(const T &c) { begin(c); end(c); } and
(not is_same_v<decay_t<T>, const char*>) and
(not is_same_v<decay_t<T>, string>) and
(not is_array_v<remove_reference_t<T>> or
not is_same_v<remove_extent_t<remove_reference_t<T>>, char>)
ostream &operator<<(ostream &O, const T &a) {
if (a.empty()) return O;
Z i = a.begin();
O << *i++;
for (; i != a.end(); ++i) O << ' ' << *i;
return O;
}
void IN() {}
TE void IN(T &x, Z &...s) { cin >> x, IN(s...); }
void print() { cout << '\n'; }
TES void print(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
print(forward<S>(y)...);
}
void put() { cout << ' '; }
TES void put(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
put(forward<S>(y)...);
}
#define INT(...) int __VA_ARGS__; IN(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; IN(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__; IN(__VA_ARGS__)
#define I128(...) i128 __VA_ARGS__; IN(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; IN(__VA_ARGS__)
#define CH(...) char __VA_ARGS__; IN(__VA_ARGS__)
#define REAL(...) RE __VA_ARGS__; IN(__VA_ARGS__)
#define VEC(T, a, n) vc<T> a(n); IN(a)
#define VVEC(T, a, n, m) vvc<T> a(n, vc<T>(m)); IN(a)
void YES(bool o = 1) { print(o ? "YES" : "NO"); }
void Yes(bool o = 1) { print(o ? "Yes" : "No"); }
void yes(bool o = 1) { print(o ? "yes" : "no"); }
void NO(bool o = 1) { YES(not o); }
void No(bool o = 1) { Yes(not o); }
void no(bool o = 1) { yes(not o); }
void ALICE(bool o = 1) { print(o ? "ALICE" : "BOB"); }
void Alice(bool o = 1) { print(o ? "Alice" : "Bob"); }
void alice(bool o = 1) { print(o ? "alice" : "bob"); }
void BOB(bool o = 1) { ALICE(not o); }
void Bob(bool o = 1) { Alice(not o); }
void bob(bool o = 1) { alice(not o); }
void POSSIBLE(bool o = 1) { print(o ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool o = 1) { print(o ? "Possible" : "Impossible"); }
void possible(bool o = 1) { print(o ? "possible" : "impossible"); }
void IMPOSSIBLE(bool o = 1) { POSSIBLE(not o); }
void Impossible(bool o = 1) { Possible(not o); }
void impossible(bool o = 1) { possible(not o); }
void TAK(bool o = 1) { print(o ? "TAK" : "NIE"); }
void NIE(bool o = 1) { TAK(not o); }
#line 5 "YRS/all.hpp"
constexpr ld pi = numbers::pi;
TE constexpr T inf = numeric_limits<T>::max();
template <> constexpr i128 inf<i128> = i128(numeric_limits<ll>::max()) * 2'000'000'000'000'000'000;
template <typename T, typename U>
constexpr pair<T, U> inf<pair<T, U>> = {inf<T>, inf<U>};
TE constexpr static inline int pc(T x) { return popcount(make_unsigned_t<T>(x)); }
constexpr static inline ll len(const Z &a) { return a.size(); }
void reverse(Z &a) { std::reverse(all(a)); }
void unique(Z &a) {
sort(a);
a.erase(unique(all(a)), a.end());
}
TE vc<int> inverse(const vc<T> &a) {
int N = len(a);
vc<int> b(N, -1);
FOR(i, N) if (a[i] != -1) b[a[i]] = i;
return b;
}
Z QMAX(const Z &a) { return *max_element(all(a)); }
Z QMIN(const Z &a) { return *min_element(all(a)); }
constexpr bool chmax(Z &a, const Z &b) { return (a < b ? a = b, true : false); }
constexpr bool chmin(Z &a, const Z &b) { return (a > b ? a = b, true : false); }
template <typename T, typename U>
constexpr static pair<T, U> operator-(const pair<T, U> &p) {
return pair<T, U>(-p.fi, -p.se);
}
vc<int> argsort(const Z &a) {
vc<int> I(len(a));
iota(all(I), 0);
sort(I, [&](int i, int k) { return a[i] < a[k] or (a[i] == a[k] and i < k); });
return I;
}
TE vc<T> rearrange(const vc<T> &a, const vc<int> &I) {
int N = len(I);
vc<T> b(N);
FOR(i, N) b[i] = a[I[i]];
return b;
}
template <int off = 1, typename T>
vc<T> pre_sum(const vc<T> &a) {
int N = len(a);
vc<T> c(N + 1);
FOR(i, N) c[i + 1] = c[i] + a[i];
if constexpr (off == 0) c.erase(c.begin());
return c;
}
TE constexpr static int topbit(T x) {
if (x == 0) return - 1;
if constexpr (sizeof(T) <= 4) return 31 - __builtin_clz(x);
else return 63 - __builtin_clzll(x);
}
TE constexpr static int lowbit(T x) {
if (x == 0) return -1;
if constexpr (sizeof(T) <= 4) return __builtin_ctz(x);
else return __builtin_ctzll(x);
}
TE constexpr T floor(T x, T y) { return x / y - (x % y and (x ^ y) < 0); }
TE constexpr T ceil(T x, T y) { return floor(x + y - 1, y); }
TE constexpr pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return pair{q, x - q * y};
}
template <typename T = ll>
T SUM(const Z &v) {
return accumulate(all(v), T(0));
}
int lb(const Z &a, Z x) { return lower_bound(all(a), x) - a.begin(); }
int ub(const Z &a, Z x) { return upper_bound(all(a), x) - a.begin(); }
template <bool ck = true>
ll bina(Z F, ll l, ll r) {
if constexpr (ck) assert(F(l));
while (abs(l - r) > 1) {
ll x = (r + l) >> 1;
(F(x) ? l : r) = x;
}
return l;
}
TE T bina_real(const Z &F, T l, T r, int c = 100) {
while (c--) {
T m = (l + r) / 2;
(F(m) ? l : r) = m;
}
return (l + r) / 2;
}
Z pop(Z &s) {
if constexpr (requires { s.pop_back(); }) {
Z x = s.back();
return s.pop_back(), x;
} else if constexpr (requires { s.top(); }) {
Z x = s.top();
return s.pop(), x;
} else {
Z x = s.front();
return s.pop(), x;
}
}
void setp(int x) { cout << fixed << setprecision(x); }
TE inline void sh(vc<T> &a, int N) {
a.resize(N, T(0));
}
#line 1 "YRS/debug.hpp"
#ifdef YRSD
void DBG() { cerr << "]" << endl; }
TES void DBG(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
DBG(forward<S>(y)...);
}
#define debug(...) cerr << "[" << __LINE__ << "]: [" #__VA_ARGS__ "] = [", DBG(__VA_ARGS__)
void ERR() { cerr << endl; }
TES void ERR(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
ERR(forward<S>(y)...);
}
#define err(...) cerr << "[" << __LINE__ << "]: ", ERR(__VA_ARGS__)
#define asser assert
#else
#define debug(...) void(0721)
#define err(...) void(0721)
#define asser(...) void(0721)
#endif
#line 4 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
// #include "YRS/IO/fast_io.hpp"
// #include "YRS/random/rng.hpp"
#line 2 "YRS/flow/BM.hpp"
#line 2 "YRS/g/01coloring.hpp"
#line 2 "YRS/ds/unionfind/dsu.hpp"
struct dsu {
int c;
vc<int> fa;
dsu(int N = 0) : c(N), fa(N, -1) {}
int f(int x) {
while (fa[x] >= 0) {
int p = fa[fa[x]];
if (p < 0) return fa[x];
x = fa[x] = p;
}
return x;
}
int operator[](int x) { return f(x); }
bool merge(int x, int y) {
x = f(x), y = f(y);
if (x == y) return false;
if (fa[x] > fa[y]) swap(x, y);
fa[x] += fa[y];
fa[y] = x;
--c;
return true;
}
// set fa[y] = x;
bool set(int x, int y) {
x = f(x), y = f(y);
if (x == y) return false;
fa[x] += fa[y];
fa[y] = x;
--c;
return true;
}
int size(int x) { return -fa[f(x)]; }
int count() const { return c; }
bool same(int x, int y) { return f(x) == f(y); }
void build(int N) { fa.assign(N, -1), c = N; }
void reset() { std::fill(all(fa), -1), c = len(fa); }
vc<vc<int>> get_group() {
const int N = len(fa);
vc<vc<int>> v(N), s;
FOR(i, N) v[f(i)].ep(i);
FOR(i, N) if (not v[i].empty()) s.ep(v[i]);
return s;
}
void pr() {
const int N = len(fa);
vc<int> res(N);
FOR(i, N) res[i] = f(i);
print("fa:", res);
}
};
#line 2 "YRS/g/Basic.hpp"
#line 2 "YRS/ds/basic/hashmap.hpp"
template <typename T>
struct hash_map {
hash_map(uint N = 0) { build(N); }
void build(uint N) {
uint k = 8;
while (k < (N << 1)) k <<= 1;
ls = k >> 1, msk = k - 1;
ke.resize(k), val.resize(k), vis.assign(k, 0);
}
void clear() {
fill(all(vis), 0);
ls = (msk + 1) >> 1;
}
int size() const { return vis.size() / 2 - ls; }
int id(ull k) const {
int i = hash(k);
while (vis[i] and ke[i] != k) i = (i + 1) & msk;
return i;
}
T &operator[](ull k) {
if (ls == 0) extend();
int i = id(k);
if (not vis[i]) {
vis[i] = 1;
ke[i] = k;
val[i] = T {};
--ls;
}
return val[i];
}
T get(ull k, T fail) const {
int i = id(k);
return (vis[i] ? val[i] : fail);
}
bool contains(ull k) const {
int i = id(k);
return vis[i] and ke[i] == k;
}
// f(ke, val);
template <typename F>
void enumerate_all(F f) const {
const int N = len(vis);
FOR(i, N) if (vis[i]) f(ke[i], val[i]);
}
private:
uint ls, msk;
vc<ull> ke;
vc<T> val;
vc<u8> vis;
ull hash(ull x) const {
static const ull FIXED_RANDOM =
std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return (x ^ (x >> 31)) & msk;
}
void extend() {
vc<pair<ull, T>> dat;
const int N = len(vis);
dat.reserve(N / 2 - ls);
FOR(i, N) if (vis[i]) dat.ep(ke[i], val[i]);
build(dat.size() << 1);
for (Z &[a, b] : dat) (*this)[a] = b;
}
};
#line 4 "YRS/g/Basic.hpp"
// https://www.luogu.com.cn/problem/P5318
TE struct edge {
int f, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using ee = edge<T>;
vc<ee> edges;
vc<int> indptr;
vc<ee> csr_edges;
vc<int> vec_deg, vec_indeg, vec_outdeg;
bool prepared;
struct out_going_edges {
const graph *G;
int l, r;
out_going_edges(const graph *G, int l, int r) : G(G), l(l), r(r) {}
const ee *begin() const {
if (l == r) return 0;
return &G->csr_edges[l];
}
const ee *end() const {
if (l == r) return 0;
return &G->csr_edges[r];
}
};
bool is_prepared() { return prepared; }
graph() : N(0), M(0), prepared(false) {}
graph(int N) : N(N), M(0), prepared(false) {}
void build(int s) {
N = s, M = 0, prepared = false;
edges.clear();
indptr.clear();
csr_edges.clear();
vec_deg.clear();
vec_indeg.clear();
vec_outdeg.clear();
}
void add(int f, int t, T cost = 1, int i = -1) {
asser(not prepared);
asser(-1 < f and -1 < t and t < N and f < N);
if (i == -1) i = M;
Z e = ee({f, t, cost, i});
edges.ep(e);
++M;
}
template <bool wt = false, int off = 1>
void read_tree() {
read_graph<wt, off>(N - 1);
}
template <bool wt = false, int off = 1>
void read_graph(int M) {
edges.reserve(M * (directed ? 1 : 2));
FOR(M) {
INT(x, y);
x -= off, y -= off;
if constexpr (not wt) {
add(x, y);
} else {
T w;
IN(w);
add(x, y, w);
}
}
build();
}
void build() {
asser(not prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (Z &&e : edges) {
indptr[e.f + 1]++;
if constexpr (not directed) indptr[e.to + 1]++;
}
FOR(i, N) indptr[i + 1] += indptr[i];
Z counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (Z &&e : edges) {
csr_edges[counter[e.f]++] = e;
if constexpr (not directed) {
csr_edges[counter[e.to]++] = ee({e.to, e.f, e.cost, e.id});
}
}
}
out_going_edges operator[](int i) const {
asser(prepared);
return {this, indptr[i], indptr[i + 1]};
}
vc<int> deg_array() {
if (vec_deg.empty()) calc_dag();
return vec_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vec_indeg.empty()) calc_deg_inout();
return {vec_indeg, vec_outdeg};
}
int deg(int i) {
if (vec_deg.empty()) calc_dag();
return vec_deg[i];
}
int in_deg(int i) {
if (vec_indeg.empty()) calc_deg_inout();
return vec_indeg[i];
}
int out_deg(int i) {
if (vec_outdeg.empty()) calc_deg_inout();
return vec_outdeg[i];
}
vc<int> nidx;
vc<u8> vis_e;
// 使G中的顶点V[i]在新图表中为i
// {G, es}
// sum(deg(v))的计算量
// 注意它可能大于新图表的n+M
graph<T, directed> rearrange(vc<int> v, bool keep_eid = false) {
if (len(nidx) != N) nidx.assign(N, -1);
int N = len(v);
graph<T, directed> g(N);
vc<int> his;
FOR(i, N) {
for (Z &&e : (*this)[v[i]]) {
if (len(vis_e) <= e.id) vis_e.resize(e.id + 1);
if (vis_e[e.id]) continue;
int f = e.f, to = e.to;
if (nidx[f] != -1 and nidx[to] != -1) {
his.ep(e.id);
vis_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
g.add(nidx[f], nidx[to], e.cost, eid);
}
}
}
FOR(i, N) nidx[v[i]] = -1;
for (Z &&i : his) vis_e[i] = 0;
return g.build(), g;
}
graph<T, directed> to_directed_tree(int rt = -1) {
if (rt == -1) rt = 0;
assert(not is_directed and prepared and M == N - 1);
graph<T, true> g;
vc<int> fa(N, -1);
Z f = [&](Z &f, int n) -> void {
for (Z &e : (*this)[n]) {
if (e.to == fa[n]) continue;
fa[e.to] = n;
f(f, e.to);
}
};
f(f, rt);
for (Z &&e : edges) {
int f = e.f, to = e.to;
if (fa[f] == to) swap(f, to);
g.add(f, to, e.cost);
}
return g.build(), g;
}
hash_map<int> mp;
int get_eid(ull x, ull y) {
if (mp.size() == 0) {
mp.build(N - 1);
for (Z &&e : edges) {
ull x = e.f, y = e.to;
ull k = to_eid_key(x, y);
mp[k] = e.id;
}
}
return mp.get(to_eid_key(x, y), -1);
}
ull to_eid_key(ull x, ull y) {
if (not directed and x > y) swap(x, y);
return x * N + y;
}
graph reverse_graph() const {
static_assert(graph::is_directed);
graph res(N);
for (Z &&[f, t, w, id] : edges) {
res.add(t, f, w, id);
}
return res;
}
private:
void calc_dag() {
assert(vec_deg.empty());
vec_deg.resize(N);
for (Z &&e : edges) {
++vec_deg[e.f];
++vec_deg[e.to];
}
}
void calc_deg_inout() {
assert(vec_indeg.empty());
vec_indeg.resize(N);
vec_outdeg.resize(N);
for (Z &&e : edges) {
vec_indeg[e.to]++;
vec_outdeg[e.f]++;
}
}
};
#line 5 "YRS/g/01coloring.hpp"
template <typename GT>
vc<int> coloring01(GT &g) {
assert(g.is_prepared());
int N = g.N;
dsu fa(N << 1);
for (Z &&[f, t, w, i] : g.edges) {
fa.merge(f, t + N), fa.merge(f + N, t);
}
vc<int> c(N << 1, -1);
FOR(i, N) if (fa[i] == i and c[fa[i]] < 0) c[fa[i]] = 0, c[fa[i + N]] = 1;
FOR(i, N) if (fa[i] == fa[i + N]) return {};
FOR(i, N) c[i] = c[fa[i]];
return c.resize(N), c;
}
#line 2 "YRS/g/scc.hpp"
#line 4 "YRS/g/scc.hpp"
template <typename GT>
pair<int, vc<int>> scc_id(GT &g) {
static_assert(GT::is_directed);
assert(g.is_prepared());
int N = g.N, t = 0, c = 0;
vc<int> dfn(N), low(N), id(N), s;
Z f = [&](Z &f, int n) -> void {
dfn[n] = low[n] = ++t;
s.ep(n);
for (Z &&e : g[n]) {
if (dfn[e.to]) chmin(low[n], dfn[e.to]);
else f(f, e.to), chmin(low[n], low[e.to]);
}
if (dfn[n] == low[n]) {
int x = pop(s);
for (; x != n; x = pop(s)) id[x] = c, dfn[x] = N;
id[x] = c++, dfn[x] = N;
}
};
FOR(i, N) if (not dfn[i]) f(f, i);
FOR(i, N) id[i] = c - id[i] - 1; // del
return {c, id};
}
vc<vc<int>> get_scc_group(int c, const vc<int> &id) {
vc<vc<int>> scc(c);
int N = len(id);
vc<int> sz(c); // del
FOR(i, N) ++sz[id[i]]; // del
FOR(i, c) scc[i].reserve(sz[i]); // del
FOR(i, N) scc[id[i]].ep(i);
return scc;
}
template <typename GT>
graph<int, true> scc_dag(GT &g, int c, vc<int> &id) {
assert(g.is_prepared());
graph<int, true> ng(c);
vc<ull> es;
for (Z &&e : g.edges) {
int x = id[e.f], y = id[e.to];
if (x == y) continue;
es.ep(ull(x) << 32 | y);
}
unique(es);
ng.edges.reserve(len(es)); // del
for (ll s : es) ng.add(s >> 32, s & uint(-1));
return ng.build(), ng;
}
#line 2 "YRS/ds/basic/queue.hpp"
// queue_vector_ver
template <typename T>
struct Mqueue {
int l;
vc<T> q;
Mqueue() : l(0) {}
Mqueue(int N) : l(0) { q.reserve(N); }
Mqueue(const vc<T> &q) : l(0), q(q) {}
T &operator[](int x) {
if (x < 0) return q.end()[x];
return q[l + x];
}
const T &operator[](int x) const {
if (x < 0) return q.end()[x];
return q[l + x];
}
T &front() { return q[l]; }
const T &front() const { return q[l]; }
T &back() { return q.back(); }
const T &back() const { return q.back(); }
int size() const { return len(q) - l; }
bool empty() const { return l == len(q); }
T pop() { return q[l++]; }
void push(const T &x) { push_back(x); }
void push_back(const T& v) { q.push_back(v); }
void pop_back() { q.pop_back(); }
void clear() { q.clear(), l = 0; }
vc<T>::iterator end() { return q.end(); }
template <typename... S>
void emplace(S &&...args) { q.ep(std::forward<S>(args)...); }
};
#define queue Mqueue
TE T pop(queue<T> &q) {
T x = q.front();
return q.pop(), x;
}
#line 7 "YRS/flow/BM.hpp"
template <typename GT>
struct B_matching {
int N;
GT &g;
vc<int> col, dis, mat;
vc<u8> vis;
B_matching(GT &g) : N(g.N), g(g), dis(N, -1), mat(N, -1) {
col = coloring01(g);
if (N > 0) assert(not col.empty());
while (1) {
bfs();
vis.assign(N, 0);
int f = 0;
FOR(i, N) if (not col[i] and mat[i] == -1 and dfs(i)) ++f;
if (not f) break;
}
}
B_matching(GT &g, const vc<int> &col)
: N(g.N), g(g), col(col), dis(N, -1), mat(N, -1) {
if (N > 0) assert(not col.empty());
while (1) {
bfs();
fill(all(vis), 0);
int f = 0;
FOR(i, N) if (not col[i] and mat[i] == -1 and dfs(i)) ++f;
if (not f) break;
}
}
void bfs() {
fill(all(dis), -1);
queue<int> q;
FOR(i, N) if (not col[i] and mat[i] == -1) q.eb(i), dis[i] = 0;
while (not q.empty()) {
int n = pop(q);
for (Z &&e : g[n]) {
dis[e.to] = 0;
int w = mat[e.to];
if (w != -1 and dis[w] == -1) dis[w] = dis[n] + 1, q.eb(w);
}
}
}
bool dfs(int n) {
vis[n] = 1;
for (Z &&e : g[n]) {
int w = mat[e.to];
if (w == -1 or (not vis[w] and dis[w] == dis[n] + 1 and dfs(w))) {
mat[e.to] = n, mat[n] = e.to;
return true;
}
}
return false;
}
vc<PII> matching() {
vc<PII> res;
FOR(i, N) if (i < mat[i]) res.ep(i, mat[i]);
return res;
}
// 选最少的点,满足每条边至少有一个端点被选。最小点覆盖 = 最大匹配
vc<int> vertex_cover() {
vc<int> res;
FOR(i, N) if (col[i] ^ (dis[i] == -1)) res.ep(i);
return res;
}
vc<int> independent_set() {
vc<int> res;
FOR(i, N) if (not(col[i] ^ (dis[i] == -1))) res.ep(i);
return res;
}
vc<int> edge_cover() {
vc<u8> vis(N);
vc<int> res;
for (Z &&[f, t, c, id] : g.edges) {
if (vis[f] or vis[t]) continue;
if (mat[f] == t) res.ep(id), vis[f] = vis[t] = 1;
}
for (Z &&[f, t, c, id] : g.edges) {
if (not vis[f]) res.ep(id), vis[f] = 1;
if (not vis[t]) res.ep(id), vis[t] = 1;
}
return sort(res), res;
}
/* Dulmage–Mendelsohn 分解
https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition
http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html
- 可以作为最大匹配的条件:具有相同的 W
- 边 uv 必定被使用:具有相同 W 的边唯一
- 从 color=0 到 color=1 的边:W[l] <= W[r]
- color=0 的点必定被使用:W=1,2,...,K
- color=1 的点必定被使用:W=0,1,...,K-1
*/
pair<int, vc<int>> DM_decomposition() {
// 从非饱和点开始的搜索
vc<int> w(N, -1), q;
Z add = [&](int n, int x) -> void {
if (w[n] == -1) {
w[n] = x;
q.ep(n);
}
};
FOR(i, N) if (mat[i] == -1 and col[i] == 0) add(i, 0);
FOR(i, N) if (mat[i] == -1 and col[i] == 1) add(i, inf<int>);
while (not q.empty()) {
int n = pop(q);
if (mat[n] != -1) add(mat[n], w[n]);
if (col[n] == 0 and w[n] == 0)
for (Z &&e : g[n]) add(e.to, w[n]);
if (col[n] == 1 and w[n] == inf<int>)
for (Z &&e : g[n]) add(e.to, w[n]);
}
// 从剩余的点构成的图中进行强连通分量分解
vc<int> v;
FOR(i, N) if (w[i] == -1) v.ep(i);
int n = len(v);
graph<int, true> ng(n);
FOR(i, n) {
int x = v[i];
if (mat[x] != -1) ng.add(i, lb(v, mat[x]));
if (col[x] == 0) {
for (Z &&e : g[x]) {
if (w[e.to] != -1 or e.to == mat[x]) continue;
ng.add(i, lb(v, e.to));
}
}
}
ng.build();
Z [c, id] = scc_id(ng);
++c;
FOR(i, n) w[v[i]] = id[i] + 1;
FOR(i, N) if (w[i] == inf<int>) w[i] = c;
return {c, w};
}
};
#line 7 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"
#define tests 0
#define fl 0
#define DB 10
void Yorisou() {
INT(L, R, M);
VEC(PII, e, M);
for (Z &[x, y] : e) {
--x, --y;
y += L;
}
graph g(L + R);
for (Z &&[x, y] : e) g.add(x, y);
g.build();
B_matching f(g);
Z [k, w] = f.DM_decomposition();
for (Z [x, y] : e) Yes(w[x] == w[y]);
}
#line 1 "YRS/aa/main.hpp"
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int T = 1;
if (fl) cerr.tie(0);
if (tests and not fl) IN(T);
for (int i = 0; i < T or fl; ++i) {
Yorisou();
if (fl and i % DB == 0) cerr << "Case: " << i << '\n';
}
return 0;
}
#line 26 "No_1745_Selfish_Spies_2_\u00e0_la_Princess_Perfectionism.cpp"