結果
| 問題 | No.1783 Remix Sum |
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2026-01-28 21:00:34 |
| 言語 | Rust (1.92.0 + proconio + num + itertools) |
| 結果 |
AC
|
| 実行時間 | 1,138 ms / 10,000 ms |
| コード長 | 48,760 bytes |
| 記録 | |
| コンパイル時間 | 18,245 ms |
| コンパイル使用メモリ | 237,456 KB |
| 実行使用メモリ | 21,060 KB |
| 最終ジャッジ日時 | 2026-01-28 21:01:36 |
| 合計ジャッジ時間 | 44,049 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 76 |
ソースコード
const MOD: u32 = 120586241;
type M = ModInt<120586241>;
fn main() {
input! {
n: usize,
k: usize,
m: usize,
t: usize,
a: [usize; n],
}
let len = 10usize.pow(k as u32);
let zeta = M::new(M::PRIMITIVE_ROOT).pow(((MOD - 1) / 10) as u64);
let mut mat = [[M::zero(); 10]; 10];
let mut imat = [[M::zero(); 10]; 10];
for (i, mat) in mat.iter_mut().enumerate() {
for (j, mat) in mat.iter_mut().enumerate() {
*mat = zeta.pow((i * j) as u64);
imat[i][j] = mat.inv();
}
}
let fft10 = |a: [M; 10]| -> [M; 10] {
let mut res = [M::zero(); 10];
for (a, mat) in a.iter().zip(mat.iter()) {
for (res, mat) in res.iter_mut().zip(mat.iter()) {
*res += *a * *mat;
}
}
res
};
let inv = M::new(10).inv();
let ifft10 = |a: [M; 10]| -> [M; 10] {
let mut res = [M::zero(); 10];
for (a, mat) in a.iter().zip(imat.iter()) {
for (res, mat) in res.iter_mut().zip(mat.iter()) {
*res += *a * *mat;
}
}
for s in res.iter_mut() {
*s *= inv;
}
res
};
let mut dp = vec![M::zero(); len];
for a in a {
dp[a] += M::one();
}
for i in t..k {
let w = 10usize.pow(i as u32);
for a in dp.chunks_exact_mut(10 * w) {
for i in 0..w {
let mut b = [M::zero(); 10];
for j in 0..10 {
b[j] = a[j * w + i];
}
b = fft10(b);
for j in 0..10 {
a[j * w + i] = b[j];
}
}
}
}
let base = vec![10; t];
let len = base.iter().product::<usize>();
for a in dp.chunks_exact_mut(len) {
if a.len() == 1 {
a[0] = a[0].pow(m as u64);
continue;
}
let mut b = Vec::from(&*a);
let z = std::mem::replace(&mut b[0], M::zero());
let up = 9 * base.len();
let mut f = vec![M::zero(); up + 1];
for j in 0..=up {
f[j] = z.pow(m.saturating_sub(j) as u64) * M::binom(m, j);
}
let sq = (1..=up).min_by_key(|&i| i + up / i * 2).unwrap();
let mut memo = vec![];
let r = b;
let mut pow = vec![M::zero(); len];
pow[0] = M::one();
for _ in 0..sq {
memo.push(pow.clone());
pow = multivariate_convolution(&pow, &r, &base);
}
let r = pow;
let mut ans = vec![M::zero(); len];
for f in f.chunks(sq).rev() {
ans = multivariate_convolution(&r, &ans, &base);
for (f, m) in f.iter().zip(memo.iter()) {
for (base, m) in ans.iter_mut().zip(m.iter()) {
*base += *m * *f;
}
}
}
a.copy_from_slice(&ans);
}
for i in t..k {
let w = 10usize.pow(i as u32);
for a in dp.chunks_exact_mut(10 * w) {
for i in 0..w {
let mut b = [M::zero(); 10];
for j in 0..10 {
b[j] = a[j * w + i];
}
b = ifft10(b);
for j in 0..10 {
a[j * w + i] = b[j];
}
}
}
}
use util::*;
println!("{}", dp.iter().join("\n"));
}
fn multivariate_convolution(f: &[M], g: &[M], n: &[usize]) -> Vec<M> {
let mut a = Vec::from(n);
let len = a.iter().product::<usize>();
let k = a.len();
for i in 1..k {
a[i] *= a[i - 1];
}
assert!(a.iter().all(|a| *a > 1));
assert!(f.len() == g.len() && f.len() == len);
if a.len() == 0 {
return vec![f[0] * g[0]];
}
let weight = |x: usize| -> usize {
let mut v = 0;
for a in a.iter().rev() {
v += x / *a;
}
v % k
};
let size = (2 * len).next_power_of_two();
let mut x = vec![M::zero(); k * size];
let mut y = vec![M::zero(); k * size];
for (x, f) in [(&mut x, f), (&mut y, g)].iter_mut() {
for (i, f) in f.iter().enumerate() {
let w = weight(i);
x[i * k + w] += *f;
}
x.transform(k);
}
let mut buf = vec![M::zero(); 2 * k - 1];
for (x, y) in x.chunks_exact_mut(k).zip(y.chunks_exact(k)) {
buf.fill(M::zero());
for (i, x) in x.iter().enumerate() {
for (b, y) in buf[i..].iter_mut().zip(y.iter()) {
*b += *x * *y;
}
}
for i in (k..buf.len()).rev() {
buf[i - k] = buf[i - k] + buf[i];
}
x.copy_from_slice(&buf[..k]);
}
x.inverse_transform(k);
let mut ans = vec![M::zero(); len];
for (i, ans) in ans.iter_mut().enumerate() {
*ans = x[i * k + weight(i)];
}
ans
}
// [x^n] f g^i (0 <= i < k)
pub fn power_projection<T>(f: Vec<T>, g: Vec<T>, mut n: usize, k: usize) -> Vec<T>
where
T: Ring + Copy,
[T]: ArrayConvolution<Item = T>,
{
let mut nu = Poly2d::new(vec![T::zero(); n + 1], 1, n + 1);
let mut de = Poly2d::new(vec![T::zero(); 2 * (n + 1)], 2, n + 1);
for (i, f) in f.iter().enumerate().take(n + 1) {
nu[0][i] = *f;
}
de[0][0] = T::one();
for (i, g) in g.iter().enumerate().take(n + 1) {
de[1][i] = -*g;
}
while n > 0 {
let mut p = de.clone();
for i in 0..p.h {
for j in (1..p.w).step_by(2) {
p[i][j] = -p[i][j];
}
}
nu = nu.conv(&p);
nu = nu.resize(nu.h, nu.w.min(n + 1)).clip((0, 1), (n & 1, 2));
let mut w = de.w;
if de.w % 2 == 0 {
de = de.resize(de.h, de.w - 1);
p = p.resize(p.h, p.w - 1);
w -= 1;
}
let a = de.a.convolution(&p.a);
de = Poly2d::new(a, de.h + p.h - 1, w).clip((0, 1), (0, 2));
n >>= 1;
}
let nu = (0..nu.h).map(|i| nu[i][0]).collect::<Vec<_>>();
let de = (0..de.h).map(|i| de[i][0]).collect::<Vec<_>>();
let mut ans = nu.convolution(&de.inverse_one(k));
ans.truncate(k);
ans
}
// f^(-1)(x) mod x^n
pub fn composition_inverse<T>(mut f: Vec<T>, n: usize) -> Vec<T>
where
T: Field + From<usize> + Copy,
[T]: ArrayConvolution<Item = T>,
{
assert!(f.len() >= 2 && f[0].is_zero() && !f[1].is_zero());
let f1inv = T::one() / f[1];
if n <= 2 {
let mut res = vec![T::zero(), f1inv];
res.truncate(n);
return res;
}
f.truncate(n);
let n = n - 1;
for f in f.iter_mut() {
*f = *f * f1inv;
}
let pow = power_projection(vec![T::one()], f, n, n + 1);
let mut g = vec![T::zero(); n];
for i in 1..=n {
g[n - i] = T::from(n) * pow[i] / T::from(i);
}
g = g.log(n);
let v = -T::one() / T::from(n);
for g in g.iter_mut() {
*g = *g * v;
}
g = g.exp(n);
g.insert(0, T::zero());
let mut pow = T::one();
for g in g.iter_mut() {
*g = *g * pow;
pow = pow * f1inv;
}
g
}
// f(g(x)) mod x^n
pub fn composition_of_fps<T>(mut f: Vec<T>, mut g: Vec<T>, n: usize) -> Vec<T>
where
T: Field + Copy + std::fmt::Debug,
[T]: ArrayConvolution<Item = T>,
{
if f.is_empty() || n == 0 {
return vec![T::zero(); n];
}
if g.len() > 0 && !g[0].is_zero() {
f = f.taylor_shift(std::mem::replace(&mut g[0], T::zero()));
}
if g.iter().position(|g| !g.is_zero()).map_or(true, |x| x >= n) {
let mut res = vec![T::zero(); n];
res[0] = f[0];
return res;
}
let mut memo = vec![];
let mut de = Poly2d::new(vec![T::zero(); 2 * n], 2, n);
de[0][0] = T::one();
for (i, g) in g.iter().enumerate().take(n) {
de[1][i] = -*g;
}
let mut deg = 1;
while deg < n {
let mut s = de.clone();
for s in s.a.chunks_exact_mut(de.w) {
for s in s[1..].iter_mut().step_by(2) {
*s = -*s;
}
}
memo.push(s.clone());
if 2 * deg >= n {
break;
}
let w = de.w;
if w % 2 == 0 {
de = de.resize(de.h, w - 1);
s = s.resize(de.h, w - 1);
}
let a = de.a.convolution(&s.a);
de = Poly2d::new(a, de.h + de.h - 1, de.w);
de = de
.resize(de.h, ((n + deg - 1) / deg).min(de.w))
.clip((0, 1), (0, 2));
deg <<= 1;
}
f.resize(n, T::zero());
let h = f.len();
f.reverse();
let mut f = Poly2d::new(f, h, 1);
while let Some(mut m) = memo.pop() {
let mut nf = Poly2d::new(vec![T::zero(); f.h * (2 * f.w - 1)], f.h, 2 * f.w - 1);
for i in 0..f.h {
for j in 0..f.w {
nf[i][2 * j] = f[i][j];
}
}
if f.h != 2 * deg {
f = m.conv(&nf);
let ylow = (nf.h - 1).saturating_sub(deg - 1);
let xup = f.w.min((n + deg - 1) / deg);
f = f.resize(nf.h, xup).clip((ylow, 1), (0, 1));
} else {
let fw = nf.w;
let mw = m.w;
let w = m.w + nf.w - 1;
nf = nf.resize(nf.h, w);
nf.a.rotate_right(mw - 1);
nf.a.extend((1..mw).map(|_| T::zero()));
m = m.resize(m.h, w);
m.a.reverse();
m.a.rotate_left(fw - 1);
for _ in 1..fw {
m.a.pop();
}
let a = nf.a.middle_product(&m.a);
let nw = ((n + deg - 1) / deg).min(w);
let a = a
.chunks(w)
.flat_map(|a| a.iter().cloned().take(nw))
.collect::<Vec<_>>();
f = Poly2d::new(a, deg, nw);
}
deg >>= 1;
}
f.a.truncate(n);
f.a.resize(n, T::zero());
f.a
}
#[derive(Clone, Debug)]
struct Poly2d<T> {
a: Vec<T>,
h: usize,
w: usize,
}
impl<T> Poly2d<T>
where
T: Copy + Ring,
[T]: ArrayConvolution<Item = T>,
{
pub fn zero() -> Self {
Self::new(vec![], 0, 0)
}
pub fn new(a: Vec<T>, h: usize, w: usize) -> Self {
let mut res = vec![T::zero(); h * w];
for (res, a) in res.chunks_exact_mut(w).zip(a.chunks(w)) {
let l = w.min(a.len());
res[..l].copy_from_slice(&a[..l]);
}
Self { a: res, h, w }
}
pub fn resize(&self, h: usize, w: usize) -> Self {
if h * w == 0 {
return Self::new(vec![], 0, 0);
}
let mut a = vec![T::zero(); h * w];
let l = self.w.min(w);
for (a, b) in a.chunks_exact_mut(w).zip(self.a.chunks(self.w)) {
a[..l].copy_from_slice(&b[..l]);
}
Self::new(a, h, w)
}
fn conv(&self, rhs: &Self) -> Self {
if self.is_empty() {
return rhs.clone();
}
if rhs.is_empty() {
return rhs.clone();
}
let nw = self.w + rhs.w - 1;
let a = self.resize(self.h, nw);
let b = rhs.resize(rhs.h, nw);
Self::new(a.a.convolution(&b.a), self.h + rhs.h - 1, nw)
}
fn clip(&self, row: (usize, usize), col: (usize, usize)) -> Self {
if row.0 >= self.h || col.0 >= self.w {
return Self::zero();
}
let h = (self.h - row.0 + row.1 - 1) / row.1;
let w = (self.w - col.0 + col.1 - 1) / col.1;
let mut res = Self::new(vec![T::zero(); h * w], h, w);
for i in 0..h {
for j in 0..w {
res[i][j] = self[row.0 + row.1 * i][col.0 + col.1 * j];
}
}
res
}
fn is_empty(&self) -> bool {
self.a.is_empty()
}
}
impl<T> Index<usize> for Poly2d<T> {
type Output = [T];
fn index(&self, x: usize) -> &Self::Output {
assert!(x < self.h);
let l = x * self.w;
let r = l + self.w;
&self.a[l..r]
}
}
impl<T> IndexMut<usize> for Poly2d<T> {
fn index_mut(&mut self, x: usize) -> &mut Self::Output {
assert!(x < self.h);
let l = x * self.w;
let r = l + self.w;
&mut self.a[l..r]
}
}
pub fn product_polynomial<T>(p: Vec<Vec<T>>) -> Vec<T>
where
T: One,
[T]: ArrayConvolution<Item = T>,
{
if p.is_empty() {
return vec![T::one()];
}
if p.iter().any(|p| p.is_empty()) {
return vec![];
}
let s = p.iter().map(|p| p.len() - 1).sum::<usize>();
let mut q = (0..=s).map(|_| vec![]).collect::<Vec<_>>();
for p in p {
q[p.len() - 1].push(p);
}
let mut memo = vec![];
for i in 0..q.len() {
while let Some(f) = q[i].pop() {
if memo.is_empty() {
memo = f;
} else {
let f = memo.convolution(&f);
q[f.len() - 1].push(f);
memo.clear();
}
}
}
memo
}
pub fn consecutive_terms_of_linear_recurrent_sequence<T>(
a: Vec<T>,
c: Vec<T>,
l: usize,
r: usize,
) -> Vec<T>
where
T: Copy + Ring + std::fmt::Debug,
[T]: ArrayConvolution<Item = T>,
{
assert!(c.len() > 0 && c.len() == a.len());
let d = c.len();
let mut de = c;
for c in de.iter_mut() {
*c = -*c;
}
de.insert(0, T::one());
let mut nu = a.convolution(&de);
nu.truncate(d);
let s = l.saturating_sub(nu.len() - 1);
let t = r;
let mut ans = consecutive_terms_of_inverse(de, s, t);
ans = ans.convolution(&nu);
ans.drain(..(l - s));
ans.truncate(r - l);
ans
}
// [x^i] 1 / Q (l <= i < r)
// [x^0] Q = 1 を要求
pub fn consecutive_terms_of_inverse<T>(q: Vec<T>, l: usize, r: usize) -> Vec<T>
where
T: Copy + Ring + std::fmt::Debug,
[T]: ArrayConvolution<Item = T>,
{
assert!(q.len() > 0 && q[0].is_one());
assert!(l <= r);
if l == r {
return vec![];
}
if l + 1 == r {
return vec![kth_term_of_linearly_recurrent_sequence(
&vec![T::one()],
&q,
l,
)];
}
let mut de = q;
de.truncate(r - l + 1);
let mut f = de.clone();
for f in f[1..].iter_mut().step_by(2) {
*f = -*f;
}
let de = de
.convolution(&f)
.into_iter()
.step_by(2)
.collect::<Vec<_>>();
let s = (l + 2).saturating_sub(f.len()) / 2;
let t = (r + 1) / 2;
let x = consecutive_terms_of_inverse(de, s, t);
let mut y = vec![T::zero(); r - l + f.len() - 1];
for (i, x) in x.into_iter().enumerate() {
let k = y.len();
y[k - (r - (s + i) * 2)] = x;
}
f.reverse();
y.middle_product(&f)
}
// [x^i] P / Q
// [x^0] Q = 1 を要求
pub fn kth_term_of_linearly_recurrent_sequence<T>(p: &[T], q: &[T], mut k: usize) -> T
where
T: Copy + Ring,
[T]: ArrayConvolution<Item = T>,
{
assert!(q.len() > 0 && q[0].is_one());
let mut nu = Vec::from(p);
let mut de = Vec::from(q);
while k > 0 {
de.truncate(k + 1);
nu.truncate(k + 1);
let mut f = de.clone();
for f in f[1..].iter_mut().step_by(2) {
*f = -*f;
}
nu = nu
.convolution(&f)
.into_iter()
.skip(k & 1)
.step_by(2)
.collect();
de = de.convolution(&f).into_iter().step_by(2).collect();
k >>= 1;
}
nu[0]
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
let mut t = 1;
while n > 0 {
if n & 1 == 1 {
t = (t as u64 * r as u64 % m as u64) as u32;
}
r = (r as u64 * r as u64 % m as u64) as u32;
n >>= 1;
}
t
}
pub const fn primitive_root(p: u32) -> u32 {
let mut m = p - 1;
let mut f = [1; 30];
let mut k = 0;
let mut d = 2;
while d * d <= m {
if m % d == 0 {
f[k] = d;
k += 1;
}
while m % d == 0 {
m /= d;
}
d += 1;
}
if m > 1 {
f[k] = m;
k += 1;
}
let mut g = 1;
while g < p {
let mut ok = true;
let mut i = 0;
while i < k {
ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
i += 1;
}
if ok {
break;
}
g += 1;
}
g
}
pub const fn is_prime(n: u32) -> bool {
if n <= 1 {
return false;
}
let mut d = 2;
while d * d <= n {
if n % d == 0 {
return false;
}
d += 1;
}
true
}
#[derive(Clone, Copy)]
pub struct ModInt<const M: u32>(u32);
impl<const M: u32> ModInt<{ M }> {
const REM: u32 = {
let mut t = 1u32;
let mut s = !M + 1;
let mut n = !0u32 >> 2;
while n > 0 {
if n & 1 == 1 {
t = t.wrapping_mul(s);
}
s = s.wrapping_mul(s);
n >>= 1;
}
t
};
const INI: u64 = ((1u128 << 64) % M as u128) as u64;
const VALID: () = assert!(is_prime(M) && M % 2 == 1 && M < (1 << 30));
const PRIMITIVE_ROOT: u32 = primitive_root(M);
const ORDER: usize = 1 << (M - 1).trailing_zeros();
const fn reduce(x: u64) -> u32 {
let _ = Self::VALID;
let b = (x as u32 * Self::REM) as u64;
let t = x + b * M as u64;
(t >> 32) as u32
}
const fn multiply(a: u32, b: u32) -> u32 {
Self::reduce(a as u64 * b as u64)
}
pub const fn new(v: u32) -> Self {
Self(Self::reduce((v % M) as u64 * Self::INI))
}
pub const fn const_mul(&self, rhs: Self) -> Self {
Self(Self::multiply(self.0, rhs.0))
}
pub const fn pow(&self, mut n: u64) -> Self {
let mut t = Self::new(1);
let mut r = *self;
while n > 0 {
if n & 1 == 1 {
t = t.const_mul(r);
}
r = r.const_mul(r);
n >>= 1;
}
t
}
pub const fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(M as u64 - 2)
}
pub const fn get(&self) -> u32 {
let mut res = Self::reduce(self.0 as u64);
if res >= M {
res -= M;
}
res
}
pub const fn zero() -> Self {
Self::new(0)
}
pub const fn one() -> Self {
Self::new(1)
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
impl<const M: u32> Add for ModInt<{ M }> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= 2 * M {
v -= 2 * M;
}
Self(v)
}
}
impl<const M: u32> Sub for ModInt<{ M }> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += 2 * M;
}
Self(v)
}
}
impl<const M: u32> Mul for ModInt<{ M }> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.const_mul(rhs)
}
}
impl<const M: u32> Div for ModInt<{ M }> {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl<const M: u32> AddAssign for ModInt<{ M }> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<const M: u32> SubAssign for ModInt<{ M }> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<const M: u32> MulAssign for ModInt<{ M }> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<const M: u32> DivAssign for ModInt<{ M }> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl<const M: u32> Neg for ModInt<{ M }> {
type Output = Self;
fn neg(self) -> Self::Output {
if self.0 == 0 {
self
} else {
Self(2 * M - self.0)
}
}
}
impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<const M: u32> From<usize> for ModInt<{ M }> {
fn from(val: usize) -> ModInt<{ M }> {
ModInt::new((val % M as usize) as u32)
}
}
impl<const M: u32> From<u64> for ModInt<{ M }> {
fn from(val: u64) -> ModInt<{ M }> {
ModInt::new((val % M as u64) as u32)
}
}
impl<const M: u32> From<i64> for ModInt<{ M }> {
fn from(val: i64) -> ModInt<{ M }> {
ModInt::new(val.rem_euclid(M as i64) as u32)
}
}
impl<const M: u32> Into<usize> for ModInt<{ M }> {
fn into(self) -> usize {
self.get() as usize
}
}
impl<const M: u32> PartialEq for ModInt<{ M }> {
fn eq(&self, rhs: &Self) -> bool {
self.get() == rhs.get()
}
}
impl<const M: u32> Eq for ModInt<{ M }> {}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<T>,
ifact: Vec<T>,
inv: Vec<T>,
}
impl<T> Precalc<T>
where
T: Copy + Field,
{
pub fn new(size: usize) -> Self {
let mut fact = vec![T::one(); size + 1];
let mut ifact = vec![T::one(); size + 1];
let mut inv = vec![T::one(); size + 1];
let mut mul = T::one();
for i in 2..=size {
mul = mul + T::one();
fact[i] = fact[i - 1] * mul;
}
ifact[size] = T::one() / fact[size];
for i in (2..=size).rev() {
inv[i] = ifact[i] * fact[i - 1];
ifact[i - 1] = ifact[i] * mul;
mul = mul - T::one();
}
Self { fact, ifact, inv }
}
pub fn fact(&self, n: usize) -> T {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> T {
self.ifact[n]
}
pub fn inv(&self, n: usize) -> T {
assert!(0 < n);
self.inv[n]
}
pub fn perm(&self, n: usize, k: usize) -> T {
if k > n {
return T::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> T {
if n < k {
return T::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
impl<const M: u32> Zero for ModInt<{ M }> {
fn zero() -> Self {
Self::zero()
}
fn is_zero(&self) -> bool {
self.get() == 0
}
}
impl<const M: u32> One for ModInt<{ M }> {
fn one() -> Self {
Self::one()
}
fn is_one(&self) -> bool {
self.get() == 1
}
}
// ---------- begin array op ----------
struct NTTPrecalc<const M: u32> {
sum_e: [ModInt<{ M }>; 30],
sum_ie: [ModInt<{ M }>; 30],
}
impl<const M: u32> NTTPrecalc<{ M }> {
const fn new() -> Self {
let cnt2 = (M - 1).trailing_zeros() as usize;
let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
let zeta = root.pow((M - 1) as u64 >> cnt2);
let mut es = [ModInt::zero(); 30];
let mut ies = [ModInt::zero(); 30];
let mut sum_e = [ModInt::zero(); 30];
let mut sum_ie = [ModInt::zero(); 30];
let mut e = zeta;
let mut ie = e.inv();
let mut i = cnt2;
while i >= 2 {
es[i - 2] = e;
ies[i - 2] = ie;
e = e.const_mul(e);
ie = ie.const_mul(ie);
i -= 1;
}
let mut now = ModInt::one();
let mut inow = ModInt::one();
let mut i = 0;
while i < cnt2 - 1 {
sum_e[i] = es[i].const_mul(now);
sum_ie[i] = ies[i].const_mul(inow);
now = ies[i].const_mul(now);
inow = es[i].const_mul(inow);
i += 1;
}
Self { sum_e, sum_ie }
}
}
struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}
pub trait ArrayAdd {
type Item;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayAdd for [T]
where
T: Zero + Copy,
{
type Item = T;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.add_assign(rhs);
c
}
}
pub trait ArrayAddAssign {
type Item;
fn add_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayAddAssign for [T]
where
T: Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
}
}
impl<T> ArrayAddAssign for Vec<T>
where
T: Zero + Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().add_assign(rhs);
}
}
pub trait ArraySub {
type Item;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArraySub for [T]
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.sub_assign(rhs);
c
}
}
pub trait ArraySubAssign {
type Item;
fn sub_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArraySubAssign for [T]
where
T: Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
}
}
impl<T> ArraySubAssign for Vec<T>
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().sub_assign(rhs);
}
}
pub trait ArrayDot {
type Item;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayDot for [T]
where
T: Mul<Output = T> + Copy,
{
type Item = T;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() == rhs.len());
self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
}
}
pub trait ArrayDotAssign {
type Item;
fn dot_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayDotAssign for [T]
where
T: MulAssign + Copy,
{
type Item = T;
fn dot_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() == rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
}
}
pub trait ArrayMul {
type Item;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayMul for [T]
where
T: Zero + One + Copy,
{
type Item = T;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.is_empty() || rhs.is_empty() {
return vec![];
}
let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
for (i, a) in self.iter().enumerate() {
for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
*res = *res + *a * *b;
}
}
res
}
}
pub trait NTT {
fn ntt(&mut self);
fn intt(&mut self);
fn transform(&mut self, len: usize);
fn inverse_transform(&mut self, len: usize);
fn dot_product_ntt(&mut self, rhs: &Self, len: usize);
}
impl<const M: u32> NTT for [ModInt<{ M }>] {
fn ntt(&mut self) {
self.transform(1);
}
fn intt(&mut self) {
self.inverse_transform(1);
}
fn transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in 1..=k {
let p = len << (k - ph);
let mut now = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y * now;
*x = l + r;
*y = l - r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
}
}
fn inverse_transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in (1..=k).rev() {
let p = len << (k - ph);
let mut inow = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y;
*x = l + r;
*y = (l - r) * inow;
}
inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
}
}
let ik = ModInt::new(2).inv().pow(k as u64);
for f in f.iter_mut() {
*f *= ik;
}
}
fn dot_product_ntt(&mut self, rhs: &Self, len: usize) {
let mut buf = [ModInt::zero(); 20];
let buf = &mut buf[..(2 * len - 1)];
let pre = &NTTPrecalcHelper::<{ M }>::A;
let mut now = ModInt::one();
for (i, (f, g)) in self
.chunks_exact_mut(2 * len)
.zip(rhs.chunks_exact(2 * len))
.enumerate()
{
let mut r = now;
for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
buf.fill(ModInt::zero());
for (i, f) in f.iter().enumerate() {
for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
*buf = *buf + *f * *g;
}
}
f.copy_from_slice(&buf[..len]);
for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
*f = *f + r * *buf;
}
r = -r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
}
}
// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
type Item;
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
fn middle_product(&self, a: &[Self::Item]) -> Vec<Self::Item>;
}
pub fn convolution_modulo<const MOD: u32, const A: u32>(
a: &[ModInt<MOD>],
b: &[ModInt<MOD>],
) -> Vec<ModInt<A>> {
let a = a
.iter()
.map(|a| ModInt::<A>::new(a.get()))
.collect::<Vec<_>>();
let b = b
.iter()
.map(|a| ModInt::<A>::new(a.get()))
.collect::<Vec<_>>();
a.convolution(&b)
}
pub fn middle_product_modulo<const MOD: u32, const A: u32>(
a: &[ModInt<MOD>],
b: &[ModInt<MOD>],
) -> Vec<ModInt<A>> {
let a = a
.iter()
.map(|a| ModInt::<A>::new(a.get()))
.collect::<Vec<_>>();
let b = b
.iter()
.map(|a| ModInt::<A>::new(a.get()))
.collect::<Vec<_>>();
a.middle_product(&b)
}
impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
type Item = ModInt<{ M }>;
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.len().min(rhs.len()) <= 32 {
return self.mul(rhs);
}
const PARAM: usize = 10;
let size = self.len() + rhs.len() - 1;
let mut k = 0;
while (size + (1 << k) - 1) >> k > PARAM {
k += 1;
}
if ModInt::<{ M }>::ORDER < k {
const A: u32 = 167772161;
const B: u32 = 469762049;
const C: u32 = 754974721;
assert!(ModInt::<A>::ORDER >= k);
assert!(ModInt::<B>::ORDER >= k);
assert!(ModInt::<C>::ORDER >= k);
const P: u32 = pow_mod(A, B - 2, B);
const Q: u32 = pow_mod(A, C - 2, C);
const R: u32 = pow_mod(B, C - 2, C);
const QR: u32 = (Q as u64 * R as u64 % C as u64) as u32;
const W1: u32 = A;
let w2: u32 = (A as u64 * B as u64 % M as u64) as u32;
let x: Vec<ModInt<A>> = convolution_modulo(self, rhs);
let y: Vec<ModInt<B>> = convolution_modulo(self, rhs);
let z: Vec<ModInt<C>> = convolution_modulo(self, rhs);
let mut ans = vec![ModInt::<{ M }>::zero(); x.len()];
for (((ans, x), y), z) in ans.iter_mut().zip(x).zip(y).zip(z) {
let a = x.get();
let b = ((y.get() + B - a) as u64 * P as u64 % B as u64) as u32;
let c = (((z.get() + C - a) as u64 * QR as u64 + (C - b) as u64 * R as u64)
% C as u64) as u32;
*ans = (a as u64 + b as u64 * W1 as u64 + c as u64 * w2 as u64).into();
}
return ans;
}
let len = (size + (1 << k) - 1) >> k;
let mut f = vec![ModInt::zero(); len << k];
let mut g = vec![ModInt::zero(); len << k];
f[..self.len()].copy_from_slice(self);
g[..rhs.len()].copy_from_slice(rhs);
f.transform(len);
g.transform(len);
f.dot_product_ntt(&g, len);
f.inverse_transform(len);
f.truncate(self.len() + rhs.len() - 1);
f
}
fn middle_product(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() >= rhs.len());
if self.len() - rhs.len() <= 32 {
return self
.windows(rhs.len())
.map(|a| {
a.iter()
.zip(rhs.iter())
.fold(ModInt::zero(), |s, p| s + *p.0 * *p.1)
})
.collect();
}
const PARAM: usize = 10;
let size = self.len();
let mut k = 0;
while (size + (1 << k) - 1) >> k > PARAM {
k += 1;
}
if ModInt::<{ M }>::ORDER < k {
const A: u32 = 167772161;
const B: u32 = 469762049;
const C: u32 = 754974721;
assert!(ModInt::<A>::ORDER >= k);
assert!(ModInt::<B>::ORDER >= k);
assert!(ModInt::<C>::ORDER >= k);
const P: u32 = pow_mod(A, B - 2, B);
const Q: u32 = pow_mod(A, C - 2, C);
const R: u32 = pow_mod(B, C - 2, C);
const QR: u32 = (Q as u64 * R as u64 % C as u64) as u32;
const W1: u32 = A;
let w2: u32 = (A as u64 * B as u64 % M as u64) as u32;
let x: Vec<ModInt<A>> = middle_product_modulo(self, rhs);
let y: Vec<ModInt<B>> = middle_product_modulo(self, rhs);
let z: Vec<ModInt<C>> = middle_product_modulo(self, rhs);
let mut ans = vec![ModInt::<{ M }>::zero(); x.len()];
for (((ans, x), y), z) in ans.iter_mut().zip(x).zip(y).zip(z) {
let a = x.get();
let b = ((y.get() + B - a) as u64 * P as u64 % B as u64) as u32;
let c = (((z.get() + C - a) as u64 * QR as u64 + (C - b) as u64 * R as u64)
% C as u64) as u32;
*ans = (a as u64 + b as u64 * W1 as u64 + c as u64 * w2 as u64).into();
}
return ans;
}
let len = (size + (1 << k) - 1) >> k;
let mut f = vec![ModInt::zero(); len << k];
let mut g = vec![ModInt::zero(); len << k];
f[..self.len()].copy_from_slice(self);
g[..rhs.len()].copy_from_slice(rhs);
g[..rhs.len()].reverse();
f.transform(len);
g.transform(len);
f.dot_product_ntt(&g, len);
f.inverse_transform(len);
(rhs.len()..=self.len()).map(|i| f[i - 1]).collect()
}
}
pub trait PolynomialOperation {
type Item;
fn eval(&self, x: Self::Item) -> Self::Item;
fn derivative(&self) -> Vec<Self::Item>;
fn integral(&self) -> Vec<Self::Item>;
}
impl<T> PolynomialOperation for [T]
where
T: Field + Copy,
{
type Item = T;
fn eval(&self, x: Self::Item) -> Self::Item {
self.iter().rfold(T::zero(), |s, a| s * x + *a)
}
fn derivative(&self) -> Vec<Self::Item> {
if self.len() <= 1 {
return vec![];
}
self[1..]
.iter()
.scan(T::one(), |s, a| {
let res = *a * *s;
*s = *s + T::one();
Some(res)
})
.collect()
}
fn integral(&self) -> Vec<Self::Item> {
let mut inv = vec![T::one(); self.len() + 1];
let mut val = T::zero();
for i in 1..inv.len() {
val = val + T::one();
inv[i] = val * inv[i - 1];
}
let mut iprod = T::one() / inv[self.len()];
for i in (1..inv.len()).rev() {
inv[i] = iprod * inv[i - 1] * self[i - 1];
iprod = iprod * val;
val = val - T::one();
}
inv[0] = T::zero();
inv
}
}
pub trait RingInverse {
type Item;
fn inverse_one(&self, n: usize) -> Vec<Self::Item>;
}
impl<T> RingInverse for [T]
where
T: Ring + Copy,
[T]: ArrayConvolution<Item = T>,
{
type Item = T;
fn inverse_one(&self, n: usize) -> Vec<Self::Item> {
if n == 0 {
return vec![];
}
assert!(self.len() > 0 && self[0].is_one());
let mut g = Vec::with_capacity(n);
g.push(T::one());
let mut f = Vec::from(self);
f.resize(n, T::zero());
while g.len() < n {
let size = g.len();
let up = (2 * size).min(n);
let mut ig = g.clone();
ig.push(T::zero());
ig.reverse();
let fg = f[..up].middle_product(&ig);
g.extend(fg.convolution(&g)[..up - size].iter().map(|p| -*p));
}
g
}
}
pub trait FPSOperation {
type Item;
fn inverse(&self, n: usize) -> Vec<Self::Item>;
fn log(&self, n: usize) -> Vec<Self::Item>;
fn exp(&self, n: usize) -> Vec<Self::Item>;
}
impl<T> FPSOperation for [T]
where
T: Field + Copy,
[T]: ArrayConvolution<Item = T>,
{
type Item = T;
fn inverse(&self, n: usize) -> Vec<Self::Item> {
if n == 0 {
return vec![];
}
assert!(self.len() > 0 && !self[0].is_zero());
let inv = T::one() / self[0];
let mut f = Vec::from(self);
for f in f.iter_mut() {
*f = *f * inv;
}
let mut res = f.inverse_one(n);
for r in res.iter_mut() {
*r = *r * inv;
}
res
}
fn log(&self, n: usize) -> Vec<Self::Item> {
if n == 0 {
return vec![];
}
assert!(self.len() > 0 && self[0].is_one());
let mut res = self.derivative().convolution(&self.inverse(n));
res.truncate(n - 1);
res.integral()
}
fn exp(&self, n: usize) -> Vec<Self::Item> {
if n == 0 {
return vec![];
}
assert!(self.len() > 0 && self[0].is_zero());
let mut g = Vec::with_capacity(n);
g.push(T::one());
while g.len() < n {
let size = g.len();
let up = (2 * size).min(n);
let lg = g.log(up);
let rhs = self[..up.min(self.len())].sub(&lg);
let mut h = g.convolution(&rhs);
h.resize(up, T::zero());
g.extend(h[size..up].iter().cloned());
}
g
}
}
// ---------- end array op ----------
// ---------- begin trait ----------
use std::ops::*;
pub trait Zero: Sized + Add<Self, Output = Self> {
fn zero() -> Self;
fn is_zero(&self) -> bool;
}
pub trait One: Sized + Mul<Self, Output = Self> {
fn one() -> Self;
fn is_one(&self) -> bool;
}
pub trait Group: Zero + Sub<Output = Self> + Neg<Output = Self> {}
pub trait SemiRing: Zero + One {}
pub trait Ring: SemiRing + Group {}
pub trait Field: Ring + Div<Output = Self> {}
impl<T> Group for T where T: Zero + Sub<Output = Self> + Neg<Output = Self> {}
impl<T> SemiRing for T where T: Zero + One {}
impl<T> Ring for T where T: SemiRing + Group {}
impl<T> Field for T where T: Ring + Div<Output = Self> {}
pub fn zero<T: Zero>() -> T {
T::zero()
}
pub fn one<T: One>() -> T {
T::one()
}
pub fn pow<T: One + Clone>(mut r: T, mut n: usize) -> T {
let mut t = one();
while n > 0 {
if n & 1 == 1 {
t = t * r.clone();
}
r = r.clone() * r;
n >>= 1;
}
t
}
pub fn pow_sum<T: SemiRing + Clone>(r: T, n: usize) -> T {
if n == 0 {
T::zero()
} else if n & 1 == 1 {
T::one() + r.clone() * pow_sum(r, n - 1)
} else {
let a = T::one() + r.clone();
let b = r.clone() * r;
a * pow_sum(b, n / 2)
}
}
// ---------- end trait ----------
mod util {
pub trait Join {
fn join(self, sep: &str) -> String;
}
impl<T, I> Join for I
where
I: Iterator<Item = T>,
T: std::fmt::Display,
{
fn join(self, sep: &str) -> String {
let mut s = String::new();
use std::fmt::*;
for (i, v) in self.enumerate() {
if i > 0 {
write!(&mut s, "{}", sep).ok();
}
write!(&mut s, "{}", v).ok();
}
s
}
}
}
// ---------- taylor shift ----------
// f(x) とcを受け取って f(x+c) を返す
pub trait TaylorShift {
type Item;
fn taylor_shift(&self, c: Self::Item) -> Vec<Self::Item>;
}
impl<T> TaylorShift for [T]
where
T: Copy + Field,
[T]: ArrayConvolution<Item = T>,
{
type Item = T;
fn taylor_shift(&self, c: Self::Item) -> Vec<Self::Item> {
if self.is_empty() || c.is_zero() {
return Vec::from(self);
}
let mut fact = vec![T::one(); self.len()];
let mut val = T::zero();
for i in 1..fact.len() {
val = val + T::one();
fact[i] = fact[i - 1] * val;
}
let mut ifact = vec![T::one(); self.len()];
ifact[self.len() - 1] = T::one() / fact[self.len() - 1];
for i in (1..fact.len()).rev() {
ifact[i - 1] = ifact[i] * val;
val = val - T::one();
}
let mut a = Vec::from(self);
for (a, f) in a.iter_mut().zip(fact.iter()) {
*a = *a * *f;
}
a.reverse();
let mut pow = T::one();
for (f, i) in fact.iter_mut().zip(ifact.iter()) {
*f = *i * pow;
pow = pow * c;
}
a = a.convolution(&fact);
a.truncate(self.len());
a.reverse();
for (a, i) in a.iter_mut().zip(ifact.iter()) {
*a = *a * *i;
}
a
}
}
// ---------- taylor shift ----------
// f(x) を x = a * r^i (0 <= i < m) で評価した値の列を返す
pub fn multipoint_evaluation_on_geometric_sequence<T>(f: &[T], a: T, r: T, m: usize) -> Vec<T>
where
T: Copy + Field,
[T]: ArrayConvolution<Item = T>,
{
let n = f.len();
assert!(n > 0 && m > 0);
if r.is_zero() {
let mut res = vec![f[0]; m];
res[0] = f.iter().rev().fold(T::zero(), |s, f| s * a + *f);
return res;
}
let ir = T::one() / r;
let mut f = Vec::from(f);
let mut dp = (T::one(), ir);
for f in f.iter_mut() {
*f = *f * dp.0;
dp = (dp.0 * dp.1 * a, dp.1 * ir);
}
let mut g = vec![T::zero(); n + m - 1];
let mut dp = (T::one(), r);
for g in g.iter_mut() {
*g = dp.0;
dp = (dp.0 * dp.1, dp.1 * r);
}
f = g.middle_product(&f);
let mut dp = (T::one(), ir);
for f in f.iter_mut() {
*f = *f * dp.0;
dp = (dp.0 * dp.1, dp.1 * ir);
}
f
}
pub fn multipoint_evaluation<T>(c: Vec<T>, p: Vec<T>) -> Vec<T>
where
T: Copy + Ring,
[T]: ArrayConvolution<Item = T>,
{
if p.is_empty() {
return vec![];
}
let n = c.len();
let m = p.len();
let mut prod = vec![vec![]; 2 * m];
for (prod, p) in prod[m..].iter_mut().zip(p.iter()) {
*prod = vec![T::one(), -*p];
}
for i in (1..m).rev() {
prod[i] = prod[2 * i].convolution(&prod[2 * i + 1]);
}
let inv = prod[1].inverse_one(n);
let mut c = c;
c.resize(n + m - 1, T::zero());
let mut dp = vec![vec![]; 2 * m];
dp[1] = c.middle_product(&inv);
for i in 1..m {
dp[2 * i] = dp[i].middle_product(&prod[2 * i + 1]);
dp[2 * i + 1] = dp[i].middle_product(&prod[2 * i]);
}
dp[m..].iter().map(|dp| dp[0]).collect()
}
pub fn shift_of_sampling_points_of_polynomial<T>(f: &[T], c: T, m: usize) -> Vec<T>
where
T: Copy + Field + From<usize> + Into<usize>,
[T]: ArrayConvolution<Item = T>,
{
if f.is_empty() {
return vec![T::zero(); m];
}
if m == 0 {
return vec![];
}
let cv: usize = c.into();
if cv < f.len() {
let sub = f.len() - cv;
if m <= sub {
return Vec::from(&f[cv..(cv + m)]);
}
let mut ans = Vec::from(&f[cv..]);
ans.extend(shift_of_sampling_points_of_polynomial(
&f,
T::from(f.len()),
m - sub,
));
return ans;
}
for i in 0..m {
if T::from(cv + i).is_zero() {
let up = i;
let mut ans = shift_of_sampling_points_of_polynomial(&f, c, up);
ans.extend(&shift_of_sampling_points_of_polynomial(
&f,
T::zero(),
m - up,
));
return ans;
}
}
let pc = Precalc::<T>::new(f.len());
let n = f.len();
let mut f = Vec::from(f);
for (i, f) in f.iter_mut().enumerate() {
*f = *f * pc.ifact(i) * pc.ifact(n - 1 - i);
if (n - 1 - i) % 2 == 1 {
*f = -*f;
}
}
let mut prod = vec![one(); n + m - 1];
let mut v = T::one();
for i in 0..prod.len() {
v = v * T::from(cv - (n - 1) + i);
prod[i] = v;
}
let mut inv = vec![one(); n + m - 1];
inv[n + m - 2] = T::one() / prod[n + m - 2];
for i in (0..(inv.len() - 1)).rev() {
inv[i] = inv[i + 1] * T::from(cv - (n - 1) + i + 1);
inv[i + 1] = inv[i + 1] * prod[i];
}
f.reverse();
let mut f = inv.middle_product(&f);
let mut val = prod[n - 1];
for (i, f) in f.iter_mut().enumerate() {
*f = *f * val;
val = val * inv[i] * T::from(cv + 1 + i);
}
f
}
akakimidori