結果

問題 No.3442 Good Vertex Connectivity
コンテスト
ユーザー risujiroh
提出日時 2026-02-06 21:58:58
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 1,010 ms / 3,000 ms
コード長 11,903 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 5,147 ms
コンパイル使用メモリ 365,128 KB
実行使用メモリ 39,160 KB
最終ジャッジ日時 2026-02-06 21:59:51
合計ジャッジ時間 48,276 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 69
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

void Solve() {
  int n;
  IN(n);
  HldTree g(n);
  for (int _ : Rep(0, n - 1)) {
    int i, j;
    IN(OneBased(i, j));
    g.add_edge({i, j, 1});
  }
  g.build(0);

  set<int> se;
  atcoder::fenwick_tree<int> f(n);

  auto modify = [&](int t1, int t2, int sign) {
    int i = g.order[t1];
    int j = g.order[t2];
    f.add(t1, sign * g.d(i, j));
  };

  auto add = [&](int i) {
    int t = g.in[i];
    assert(!se.contains(t));
    auto it = se.lower_bound(t);
    if (it != se.begin() && it != se.end()) {
      modify(*prev(it), *it, -1);
    }
    if (it != se.begin()) {
      modify(*prev(it), t, 1);
    }
    if (it != se.end()) {
      modify(t, *it, 1);
    }
    se.insert(it, t);
  };

  auto rm = [&](int i) {
    int t = g.in[i];
    assert(se.contains(t));
    auto it = se.lower_bound(t);
    it = se.erase(it);
    if (it != se.begin()) {
      modify(*prev(it), t, -1);
    }
    if (it != se.end()) {
      modify(t, *it, -1);
    }
    if (it != se.begin() && it != se.end()) {
      modify(*prev(it), *it, 1);
    }
  };

  for (int i : Rep(0, n)) {
    int c;
    IN(c);
    if (c == 1) {
      add(i);
    }
  }

  auto go = [&](vector<pair<int, int>> v) -> int {
    {
      vector<pair<int, int>> nv;
      for (const auto& [l, r] : v) {
        auto it = se.lower_bound(l);
        if (it != se.end() && *it < r) {
          nv.emplace_back(l, r);
        }
      }
      v = move(nv);
    }
    if (v.empty()) {
      return 0;
    }
    int ret = 0;
    auto [pl, pr] = v.back();
    for (const auto& [l, r] : v) {
      auto it = prev(se.lower_bound(pr));
      ret += g.d(g.order[*it], g.order[*se.lower_bound(l)]);
      ret += f.sum(l, *prev(se.lower_bound(r)));
      pl = l;
      pr = r;
    }
    assert(ret % 2 == 0);
    ret >>= 1;
    return ret + 1;
  };

  int q;
  IN(q);
  while (q--) {
    int tp;
    IN(tp);
    if (tp == 1) {
      int i;
      IN(OneBased(i));
      if (se.contains(g.in[i])) {
        rm(i);
      } else {
        add(i);
      }
    } else {
      int x, y;
      IN(OneBased(x, y));
      int ans;
      if (x == y) {
        ans = go({{0, n}});
      } else {
        if (g.is_ancestor(y, x)) {
          int z = g.next(y, x);
          ans = go({{0, g.in[z]}, {g.out[z], n}});
        } else {
          ans = go({{g.in[y], g.out[y]}});
        }
      }
      OUT(ans);
    }
  }
}

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  Solve();
}

#elif __INCLUDE_LEVEL__ == 1

#include <bits/stdc++.h>

#include <atcoder/fenwicktree.hpp>

struct Graph {
  struct Edge {
    int src, dst;
    int64_t cost;

    int other(int v) const {
      __glibcxx_assert(v == src or v == dst);
      return src ^ dst ^ v;
    }
  };

  std::vector<Edge> edges;
  std::vector<std::vector<std::pair<int, int>>> adj;

  Graph() {}
  explicit Graph(int n) : adj(n) {}

  int n() const { return std::size(adj); }
  int m() const { return std::size(edges); }
  int add_edge(const Edge& e, bool directed) {
    __glibcxx_assert(0 <= e.src and e.src < n());
    __glibcxx_assert(0 <= e.dst and e.dst < n());
    int id = m();
    edges.push_back(e);
    adj[e.src].emplace_back(e.dst, id);
    if (not directed) adj[e.dst].emplace_back(e.src, id);
    return id;
  }
};

struct DfsTree : Graph {
  using T = decltype(Edge::cost);

  std::vector<int> root;
  std::vector<int> pv;
  std::vector<int> pe;
  std::vector<int> order;
  std::vector<int> in;
  std::vector<int> out;
  std::vector<int> sub;
  std::vector<int> depth;
  std::vector<int> min_depth;
  std::vector<T> dist;
  std::vector<int> last;
  int num_trials;

  DfsTree() {}
  explicit DfsTree(int n)
      : Graph(n),
        root(n, -1),
        pv(n, -1),
        pe(n, -1),
        in(n, -1),
        out(n, -1),
        sub(n, -1),
        depth(n, -1),
        min_depth(n, -1),
        dist(n, std::numeric_limits<T>::max()),
        last(n, -1),
        num_trials(0) {}

  int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
  void dfs(int r, bool clear_order = true) {
    __glibcxx_assert(0 <= r and r < n());
    root[r] = r;
    pv[r] = -1;
    pe[r] = -1;
    if (clear_order) order.clear();
    depth[r] = 0;
    dist[r] = T{};
    dfs_impl(r);
    ++num_trials;
  }
  void dfs_all() {
    std::fill(std::begin(root), std::end(root), -1);
    for (int v = 0; v < n(); ++v)
      if (root[v] == -1) dfs(v, v == 0);
  }

  int deeper(int id) const {
    __glibcxx_assert(0 <= id and id < m());
    int a = edges[id].src;
    int b = edges[id].dst;
    return depth[a] < depth[b] ? b : a;
  }
  bool is_tree_edge(int id) const {
    __glibcxx_assert(0 <= id and id < m());
    return id == pe[deeper(id)];
  }
  bool is_ancestor(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    return in[u] <= in[v] and out[v] <= out[u];
  }

 private:
  void dfs_impl(int v) {
    in[v] = std::size(order);
    order.push_back(v);
    sub[v] = 1;
    min_depth[v] = depth[v];
    last[v] = num_trials;
    for (auto&& [u, id] : adj[v]) {
      if (id == pe[v]) continue;
      if (last[u] == num_trials) {
        min_depth[v] = std::min(min_depth[v], depth[u]);
        continue;
      }
      root[u] = root[v];
      pv[u] = v;
      pe[u] = id;
      depth[u] = depth[v] + 1;
      dist[u] = dist[v] + edges[id].cost;
      dfs_impl(u);
      sub[v] += sub[u];
      min_depth[v] = std::min(min_depth[v], min_depth[u]);
    }
    out[v] = std::size(order);
  }
};

struct HldTree : DfsTree {
  std::vector<int> head;

  HldTree() {}
  explicit HldTree(int n) : DfsTree(n), head(n, -1) {}

  void build(int r, bool clear_order = true) {
    __glibcxx_assert(0 <= r and r < n());
    dfs(r, clear_order);
    order.erase(std::end(order) - sub[r], std::end(order));
    head[r] = r;
    build_impl(r);
  }
  void build_all() {
    std::fill(std::begin(root), std::end(root), -1);
    for (int v = 0; v < n(); ++v)
      if (root[v] == -1) build(v, v == 0);
  }

  int lca(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    while (true) {
      if (in[u] > in[v]) std::swap(u, v);
      if (head[u] == head[v]) return u;
      v = pv[head[v]];
    }
  }
  int d(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    return depth[u] + depth[v] - 2 * depth[lca(u, v)];
  }
  T distance(int u, int v) const {
    __glibcxx_assert(0 <= u and u < n());
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(root[u] == root[v]);
    return dist[u] + dist[v] - 2 * dist[lca(u, v)];
  }
  int la(int v, int d) const {
    __glibcxx_assert(0 <= v and v < n());
    __glibcxx_assert(0 <= d and d <= depth[v]);
    while (depth[head[v]] > d) v = pv[head[v]];
    return order[in[head[v]] + (d - depth[head[v]])];
  }
  int next(int src, int dst) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    __glibcxx_assert(src != dst);
    if (not is_ancestor(src, dst)) return pv[src];
    return la(dst, depth[src] + 1);
  }
  int next(int src, int dst, int k) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    __glibcxx_assert(k >= 0);
    int v = lca(src, dst);
    if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
    k -= depth[src] - depth[v];
    __glibcxx_assert(k <= depth[dst] - depth[v]);
    return la(dst, depth[v] + k);
  }
  template <class Function>
  void apply(int src, int dst, bool vertex, Function f) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    int v = lca(src, dst);
    while (head[src] != head[v]) {
      f(in[src] + 1, in[head[src]]);
      src = pv[head[src]];
    }
    if (vertex)
      f(in[src] + 1, in[v]);
    else if (src != v)
      f(in[src] + 1, in[v] + 1);
    auto rec = [&](auto self, int to) -> void {
      if (head[v] == head[to]) {
        if (v != to) f(in[v] + 1, in[to] + 1);
        return;
      }
      self(self, pv[head[to]]);
      f(in[head[to]], in[to] + 1);
    };
    rec(rec, dst);
  }
  template <class Searcher>
  int search(int src, int dst, bool vertex, Searcher f) const {
    __glibcxx_assert(0 <= src and src < n());
    __glibcxx_assert(0 <= dst and dst < n());
    __glibcxx_assert(root[src] == root[dst]);
    int res = -1;
    apply(src, dst, vertex, [&](int l, int r) {
      if (res != -1) return;
      int i = f(l, r);
      if (l > r) std::swap(l, r);
      if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
    });
    return res;
  }

 private:
  void build_impl(int v) {
    in[v] = std::size(order);
    order.push_back(v);
    auto pos = std::partition(std::begin(adj[v]), std::end(adj[v]), [&](auto&& e) { return e.second == pe[e.first]; });
    auto it =
        std::max_element(std::begin(adj[v]), pos, [&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
    if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
    std::partition(pos, std::end(adj[v]), [&](auto&& e) { return e.second == pe[v]; });
    for (auto&& [u, id] : adj[v]) {
      if (id != pe[u]) break;
      head[u] = u == adj[v].front().first ? head[v] : u;
      build_impl(u);
    }
    out[v] = std::size(order);
  }
};

template <class T>
concept MyRange =
    std::ranges::range<T> &&
    !std::convertible_to<T, std::string_view> &&
    !std::convertible_to<T, std::filesystem::path>;

template <class T>
concept MyTuple = std::__is_tuple_like<T>::value && !MyRange<T>;

namespace std {

istream& operator>>(istream& is, MyRange auto&& r) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

istream& operator>>(istream& is, MyTuple auto&& t) {
  apply([&](auto&... xs) { (is >> ... >> xs); }, t);
  return is;
}

ostream& operator<<(ostream& os, MyRange auto&& r) {
  auto sep = "";
  for (auto&& e : r) {
    os << exchange(sep, " ") << forward<decltype(e)>(e);
  }
  return os;
}

ostream& operator<<(ostream& os, MyTuple auto&& t) {
  auto sep = "";
  apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t);
  return os;
}

}  // namespace std

template <class T>
class OneBased {
 public:
  explicit OneBased(T&& x) : ref_(std::forward<T>(x)) {}

  template <class... Ts>
  requires(sizeof...(Ts) > 1)
      OneBased(Ts&&... xs) : ref_(std::forward_as_tuple(std::forward<Ts>(xs)...)) {}

  friend std::istream& operator>>(std::istream& is, OneBased x) {
    if constexpr (MyRange<T>) {
      for (auto&& e : x.ref_) {
        is >> ::OneBased(e);
      }
    } else if constexpr (MyTuple<T>) {
      std::apply([&](auto&... xs) { (is >> ... >> ::OneBased(xs)); }, x.ref_);
    } else {
      is >> x.ref_;
      --x.ref_;
    }
    return is;
  }

  friend std::ostream& operator<<(std::ostream& os, OneBased x) {
    if constexpr (MyRange<T>) {
      auto f = [](auto&& e) { return ::OneBased(std::forward<decltype(e)>(e)); };
      os << (x.ref_ | std::views::transform(f));
    } else if constexpr (MyTuple<T>) {
      std::apply([&](auto&... xs) { os << std::tuple(::OneBased(xs)...); }, x.ref_);
    } else {
      os << ++x.ref_;
      --x.ref_;
    }
    return os;
  }

 private:
  T ref_;
};

template <class T>
OneBased(T&&) -> OneBased<T>;

template <class... Ts>
OneBased(Ts&&...) -> OneBased<std::tuple<Ts...>>;

using namespace std;

#define _ _ [[maybe_unused]]
#define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__)
#define IN(...) (cin >> forward_as_tuple(__VA_ARGS__))
#define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n')

#endif  // __INCLUDE_LEVEL__ == 1
0