結果
| 問題 | No.3442 Good Vertex Connectivity |
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2026-02-06 22:04:25 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 22,921 bytes |
| 記録 | |
| コンパイル時間 | 4,168 ms |
| コンパイル使用メモリ | 319,056 KB |
| 実行使用メモリ | 60,264 KB |
| 最終ジャッジ日時 | 2026-02-06 22:05:18 |
| 合計ジャッジ時間 | 48,402 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 50 WA * 19 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_CYAN = "\033[1;36m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
#include <utility>
#include <vector>
// lowest common ancestor (LCA) for undirected weighted tree
template <typename T> struct UndirectedWeightedTree {
int INVALID = -1;
int V, lgV;
int E;
int root;
std::vector<std::vector<std::pair<int, int>>> adj; // (nxt_vertex, edge_id)
// vector<pint> edge; // edges[edge_id] = (vertex_id, vertex_id)
std::vector<T> weight; // w[edge_id]
std::vector<int> par; // parent_vertex_id[vertex_id]
std::vector<int> depth; // depth_from_root[vertex_id]
std::vector<T> acc_weight; // w_sum_from_root[vertex_id]
void _fix_root_dfs(int now, int prv, int prv_edge_id) {
par[now] = prv;
if (prv_edge_id != INVALID) acc_weight[now] = acc_weight[prv] + weight[prv_edge_id];
for (auto nxt : adj[now])
if (nxt.first != prv) {
depth[nxt.first] = depth[now] + 1;
_fix_root_dfs(nxt.first, now, nxt.second);
}
}
UndirectedWeightedTree() = default;
UndirectedWeightedTree(int N) : V(N), E(0), adj(N) {
lgV = 1;
while (1 << lgV < V) lgV++;
}
void add_edge(int u, int v, T w) {
adj[u].emplace_back(v, E);
adj[v].emplace_back(u, E);
// edge.emplace_back(u, v);
weight.emplace_back(w);
E++;
}
std::vector<std::vector<int>> doubling;
void _doubling_precalc() {
doubling.assign(lgV, std::vector<int>(V));
doubling[0] = par;
for (int d = 0; d < lgV - 1; d++)
for (int i = 0; i < V; i++) {
if (doubling[d][i] == INVALID)
doubling[d + 1][i] = INVALID;
else
doubling[d + 1][i] = doubling[d][doubling[d][i]];
}
}
void fix_root(int r) {
root = r;
par.resize(V);
depth.resize(V);
depth[r] = 0;
acc_weight.resize(V);
acc_weight[r] = 0;
_fix_root_dfs(root, INVALID, INVALID);
_doubling_precalc();
}
int kth_parent(int x, int k) const {
if (depth[x] < k) return INVALID;
for (int d = 0; d < lgV; d++) {
if (x == INVALID) return INVALID;
if (k & (1 << d)) x = doubling[d][x];
}
return x;
}
int lowest_common_ancestor(int u, int v) const {
if (depth[u] > depth[v]) std::swap(u, v);
v = kth_parent(v, depth[v] - depth[u]);
if (u == v) return u;
for (int d = lgV - 1; d >= 0; d--) {
if (doubling[d][u] != doubling[d][v]) u = doubling[d][u], v = doubling[d][v];
}
return par[u];
}
T path_length(int u, int v) const {
// Not distance, but the sum of weights
int r = lowest_common_ancestor(u, v);
return (acc_weight[u] - acc_weight[r]) + (acc_weight[v] - acc_weight[r]);
}
int s_to_t_by_k_steps(int s, int t, int k) const {
int l = lowest_common_ancestor(s, t);
int dsl = depth[s] - depth[l], dtl = depth[t] - depth[l];
if (k > dsl + dtl) {
return INVALID;
} else if (k < dsl) {
return kth_parent(s, k);
} else if (k == dsl) {
return l;
} else {
return kth_parent(t, dsl + dtl - k);
}
}
};
#include <cassert>
#include <cstdint>
#include <vector>
// Sorted set of integers [0, n)
// Space complexity: (64 / 63) n + O(log n) bit
class fast_set {
static constexpr int B = 64;
int n;
int cnt;
std::vector<std::vector<uint64_t>> _d;
static int bsf(uint64_t x) { return __builtin_ctzll(x); }
static int bsr(uint64_t x) { return 63 - __builtin_clzll(x); }
public:
// 0 以上 n_ 未満の整数が入れられる sorted set を作成
fast_set(int n_) : n(n_), cnt(0) {
do { n_ = (n_ + B - 1) / B, _d.push_back(std::vector<uint64_t>(n_)); } while (n_ > 1);
}
bool contains(int i) const {
assert(0 <= i and i < n);
return (_d.front().at(i / B) >> (i % B)) & 1;
}
void insert(int i) {
assert(0 <= i and i < n);
if (contains(i)) return;
++cnt;
for (auto &vec : _d) {
bool f = vec.at(i / B);
vec.at(i / B) |= 1ULL << (i % B), i /= B;
if (f) break;
}
}
void erase(int i) {
assert(0 <= i and i < n);
if (!contains(i)) return;
--cnt;
for (auto &vec : _d) {
vec.at(i / B) &= ~(1ULL << (i % B)), i /= B;
if (vec.at(i)) break;
}
}
// i 以上の最小要素 なければ default_val
int next(int i, const int default_val) const {
assert(0 <= i and i <= n);
for (auto itr = _d.cbegin(); itr != _d.cend(); ++itr, i = i / B + 1) {
if (i / B >= int(itr->size())) break;
if (auto d = itr->at(i / B) >> (i % B); d) {
i += bsf(d);
while (itr != _d.cbegin()) i = i * B + bsf((--itr)->at(i));
return i;
}
}
return default_val;
}
int next(const int i) const { return next(i, n); }
// i 以下の最小要素 なければ default_val
int prev(int i, int default_val = -1) const {
assert(-1 <= i and i < n);
for (auto itr = _d.cbegin(); itr != _d.cend() and i >= 0; ++itr, i = i / B - 1) {
if (auto d = itr->at(i / B) << (B - 1 - i % B); d) {
i += bsr(d) - (B - 1);
while (itr != _d.cbegin()) i = i * B + bsr((--itr)->at(i));
return i;
}
}
return default_val;
}
// return minimum element (if exists) or `n` (empty)
int min() const { return next(0); }
// return maximum element (if exists) or `-1` (empty)
int max() const { return prev(n - 1); }
int size() const { return cnt; }
bool empty() const { return cnt == 0; }
void clear() {
if (!cnt) return;
cnt = 0;
auto rec = [&](auto &&self, int d, int x) -> void {
if (d) {
for (auto m = _d.at(d).at(x); m;) {
int i = bsf(m);
m -= 1ULL << i, self(self, d - 1, x * B + i);
}
}
_d.at(d).at(x) = 0;
};
rec(rec, _d.size() - 1, 0);
}
};
#include <algorithm>
#include <cassert>
#include <vector>
// Range Minimum Query for static sequence by sparse table
// Complexity: (N \log N)$ for precalculation, (1)$ per query
template <typename T> struct StaticRMQ {
inline T func(const T &l, const T &r) const noexcept { return std::min<T>(l, r); }
int N, lgN;
T defaultT;
std::vector<std::vector<T>> data;
std::vector<int> lgx_table;
StaticRMQ() = default;
StaticRMQ(const std::vector<T> &sequence, T defaultT)
: N(sequence.size()), defaultT(defaultT) {
lgx_table.resize(N + 1);
for (int i = 2; i < N + 1; i++) lgx_table[i] = lgx_table[i >> 1] + 1;
lgN = lgx_table[N] + 1;
data.assign(lgN, std::vector<T>(N, defaultT));
data[0] = sequence;
for (int d = 1; d < lgN; d++) {
for (int i = 0; i + (1 << d) <= N; i++) {
data[d][i] = func(data[d - 1][i], data[d - 1][i + (1 << (d - 1))]);
}
}
}
T get(int l, int r) const { // [l, r), 0-indexed
assert(l >= 0 and r <= N);
if (l >= r) return defaultT;
int d = lgx_table[r - l];
return func(data[d][l], data[d][r - (1 << d)]);
}
};
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
struct TreeLCA {
const int N;
std::vector<std::vector<int>> to;
int root;
TreeLCA(int V = 0) : N(V), to(V), root(-1) {}
void add_edge(int u, int v) {
assert(0 <= u and u < N);
assert(0 <= v and v < N);
assert(u != v);
to[u].push_back(v);
to[v].push_back(u);
}
using P = std::pair<int, int>;
std::vector<int> subtree_begin;
std::vector<P> vis_order;
std::vector<int> depth;
void _build_dfs(int now, int prv, int dnow) {
subtree_begin[now] = vis_order.size();
vis_order.emplace_back(dnow, now);
depth[now] = dnow;
for (auto &&nxt : to[now]) {
if (nxt != prv) {
_build_dfs(nxt, now, dnow + 1);
vis_order.emplace_back(dnow, now);
}
}
}
StaticRMQ<P> rmq;
void build(int root_) {
assert(root_ >= 0 and root_ < N);
if (root == root_) return;
root = root_;
subtree_begin.assign(N, 0);
vis_order.clear();
vis_order.reserve(N * 2);
depth.assign(N, 0);
_build_dfs(root, -1, 0);
rmq = {vis_order, P{N, -1}};
}
bool built() const noexcept { return root >= 0; }
int lca(int u, int v) const {
assert(0 <= u and u < N);
assert(0 <= v and v < N);
assert(built());
int a = subtree_begin[u], b = subtree_begin[v];
if (a > b) std::swap(a, b);
return rmq.get(a, b + 1).second;
};
int path_length(int u, int v) const { return depth[u] + depth[v] - depth[lca(u, v)] * 2; }
};
#include <cassert>
#include <utility>
#include <vector>
// Euler tour
// https://maspypy.com/euler-tour-%E3%81%AE%E3%81%8A%E5%8B%89%E5%BC%B7
struct euler_tour {
int n;
int root;
std::vector<std::pair<int, int>> edges; // (parent, child)
// - 頂点 v に関する部分木に含まれる辺は, [begins[v], ends[v]) に 2 回ずつ登場
// - [begins[u], begins[v]) (begins[u] <= begins[v]) の半開区間に u-v パスを構成する辺が奇数回登場
std::vector<int> begins;
std::vector<int> ends;
vector<int> visord;
vector<int> visord_inv;
vector<int> visord_inv_right;
std::vector<int> par_eid;
std::vector<std::pair<int, bool>> tour; // (edge_id, flg) flg=true: down, false: up
void _build_dfs(int now, int prv_eid, const std::vector<std::vector<std::pair<int, int>>> &to) {
tour.emplace_back(prv_eid, true);
begins[now] = tour.size();
visord_inv.at(now) = visord.size();
visord.push_back(now);
for (auto [nxt, eid] : to[now]) {
if (eid == prv_eid) continue;
par_eid[nxt] = eid;
if (edges[eid].first == nxt) std::swap(edges[eid].first, edges[eid].second);
_build_dfs(nxt, eid, to);
}
ends[now] = tour.size();
visord_inv_right.at(now) = visord.size();
tour.emplace_back(prv_eid, false);
}
euler_tour() = default;
euler_tour(int n, const std::vector<std::pair<int, int>> &edges_, int root)
: n(n), root(root), edges(edges_), begins(n, -1), ends(n, -1), visord_inv(n, -1),
visord_inv_right(n, -1), par_eid(n, -1) {
std::vector<std::vector<std::pair<int, int>>> to(n);
for (int eid = 0; eid < (int)edges.size(); ++eid) {
auto [u, v] = edges[eid];
assert(u != v);
to.at(u).emplace_back(v, eid);
to.at(v).emplace_back(u, eid);
}
_build_dfs(root, -1, to);
}
// 頂点 v の部分木の頂点数
int subtree_size(int v) const { return (ends.at(v) - begins.at(v)) / 2 + 1; }
int par(int v) const {
int eid = par_eid.at(v);
return eid == -1 ? -1 : edges[eid].first;
}
int tour_child(int idx) const {
int eid = tour.at(idx).first;
return eid < 0 ? root : edges[eid].second;
}
};
#include <algorithm>
#include <vector>
// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
int n;
std::vector<T> data;
BIT(int len = 0) : n(len), data(len) {}
void reset() { std::fill(data.begin(), data.end(), T(0)); }
void add(int pos, T v) { // a[pos] += v
pos++;
while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
}
T sum(int k) const { // a[0] + ... + a[k - 1]
T res = 0;
while (k > 0) res += data[k - 1], k -= k & -k;
return res;
}
T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]
template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
T prv = 0;
os << '[';
for (int i = 1; i <= bit.n; i++) {
T now = bit.sum(i);
os << now - prv << ',', prv = now;
}
return os << ']';
}
};
int main() {
int N;
cin >> N;
UndirectedWeightedTree<int> tree(N);
// TreeLCA lca(N);
vector<pint> edges(N - 1);
for (auto &[a, b] : edges) cin >> a >> b, --a, --b, tree.add_edge(a, b, 1);
dbg(edges);
auto Distance = [&](int u, int v) -> int {
// return lca.path_length(u, v);
return tree.path_length(u, v);
// const int l = lca.lca(u, v);
// return lca.depth.at(u) + lca.depth.at(v) - lca.depth.at(l) * 2;
};
const int root = 0;
tree.fix_root(root);
// lca.build(root);
const euler_tour et(N, edges, root);
fast_set fs(N);
vector<int> C(N);
cin >> C;
BIT<int> bit(N);
auto UpdateDist = [&](int left_pos) {
if (left_pos < 0) return;
const int right_pos = fs.next(left_pos + 1);
const int w = bit.sum(left_pos, left_pos + 1);
bit.add(left_pos, -w);
if (!fs.contains(left_pos) or right_pos >= N) {
return;
}
const int l = et.visord.at(left_pos), r = et.visord.at(right_pos);
bit.add(left_pos, Distance(l, r));
};
auto Upd = [&](int v) {
const int pos = et.visord_inv.at(v);
if (C.at(v)) {
fs.insert(pos);
} else {
fs.erase(pos);
}
UpdateDist(pos);
UpdateDist(fs.prev(pos - 1));
};
REP(i, N) {
if (C.at(i)) Upd(i);
}
dbg(C);
dbg(et.visord);
dbg(et.visord_inv);
int Q;
cin >> Q;
while (Q--) {
int tp;
cin >> tp;
if (tp == 1) {
int v;
cin >> v;
--v;
C.at(v) ^= 1;
Upd(v);
} else {
int x, y;
cin >> x >> y;
--x, --y;
dbg(make_tuple(x, y, C));
if (x != y and tree.lowest_common_ancestor(x, y) == y) {
const int z = tree.kth_parent(x, Distance(x, y) - 1);
int zl = et.visord_inv.at(z), zr = et.visord_inv_right.at(z);
zl = fs.prev(zl - 1);
zr = fs.next(zr);
const int f0 = fs.next(0), f1 = fs.prev(N - 1);
// dbg(make_tuple(z, zl, zr, f0, f1));
if (f0 > f1) {
cout << "0\n";
} else {
const int g0 = et.visord.at(f0), g1 = et.visord.at(f1);
int ret = 0;
if (zl >= 0 and zr < N) {
const int l = et.visord.at(zl);
const int r = et.visord.at(zr);
ret = bit.sum(f0, zl) + bit.sum(zr, f1) + Distance(g0, g1) + Distance(l, r);
} else if (zl >= 0) {
const int l = et.visord.at(zl);
ret = bit.sum(f0, zl) + Distance(g0, l);
} else if (zr < N) {
const int r = et.visord.at(zr);
ret = bit.sum(zr, f1) + Distance(g1, r);
} else {
// assert(false);
}
cout << (ret / 2 + 1) << '\n';
}
// cout << "-1\n";
// int r1pos = et.visord_inv.at(y);
} else {
if (x == y) y = 0;
int lpos = et.visord_inv.at(y), rpos = et.visord_inv_right.at(y);
lpos = fs.next(lpos);
rpos = fs.prev(rpos - 1);
// dbg(make_tuple(x, y, lpos, rpos));
// dbg(C);
if (lpos > rpos) {
cout << "0\n";
} else {
const int l = et.visord.at(lpos), r = et.visord.at(rpos);
const auto ret = bit.sum(lpos, rpos) + Distance(l, r);
// dbg(make_tuple(l, r, ret));
cout << ret / 2 + 1 << '\n';
}
}
}
}
}
hitonanode