結果

問題 No.3441 Sort Permutation 2
コンテスト
ユーザー 👑 hamamu
提出日時 2026-02-06 22:15:25
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 75 ms / 2,000 ms
コード長 26,036 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 6,013 ms
コンパイル使用メモリ 387,432 KB
実行使用メモリ 20,108 KB
最終ジャッジ日時 2026-02-06 22:15:36
合計ジャッジ時間 10,342 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#ifndef MYLOCAL
//# pragma GCC target("avx2")//yukiではNG
# pragma GCC optimize("O3")
# pragma GCC optimize("unroll-loops")
#endif
#if defined(NDEBUG)
#undef NDEBUG
#endif
#include "bits/stdc++.h"
using namespace std;
using ll=long long;
using dd=long double;
using pll=pair<ll,ll>;
using tll=tuple<ll,ll,ll>;
using qll=tuple<ll,ll,ll,ll>;
using namespace chrono;
constexpr ll INF = 1201001001001001001;
struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast;
#define EXPAND( x ) x//VS用おまじない
#define overload3(_1,_2,_3,name,...) name
#define overload4(_1,_2,_3,_4,name,...) name
#define overload5(_1,_2,_3,_4,_5,name,...) name
#define rep1(N)          for (ll dmyi = 0; dmyi < (N); dmyi++)
#define rep2(i, N)       for (ll i = 0; i < (N); i++)
#define rep3(i, S, E)    for (ll i = (S); i <= (E); i++)
#define rep4(i, S, E, t) for (ll i = (S); i <= (E); i+=(t))
#define rep(...) EXPAND(overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__))
#define dep3(i, E, S)    for (ll i = (E); i >= (S); i--)
#define dep4(i, E, S, t) for (ll i = (E); i >= (S); i-=(t))
#define dep(...) EXPAND(overload4(__VA_ARGS__, dep4, dep3,_,_)(__VA_ARGS__))
#define ALL1(v)     (v).begin(),     (v).end()
#define ALL2(v,E)   (v).begin(),     (v).begin()+((E)+1)
#define ALL3(v,S,E) (v).begin()+(S), (v).begin()+((E)+1)
#define all(...) EXPAND(overload3(__VA_ARGS__, ALL3, ALL2, ALL1)(__VA_ARGS__))
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; }
template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; }
template<class T> [[nodiscard]] inline T limithi(T a,T b){ return min(a,b); }
template<class T> [[nodiscard]] inline T limitlo(T a,T b){ return max(a,b); }
template<class T> inline bool chlimithi(T &a,T b){ return chmin(a,b); }
template<class T> inline bool chlimitlo(T &a,T b){ return chmax(a,b); }
template<class T> inline auto maxe(T &&v,ll S,ll E){ return *max_element(all(v,S,E)); }
template<class T> inline auto maxe(T &&v){ return *max_element(all(v)); }
template<class T> inline auto mine(T &&v,ll S,ll E){ return *min_element(all(v,S,E)); }
template<class T> inline auto mine(T &&v){ return *min_element(all(v)); }
template<class T,class U=typename remove_reference<T>::type::value_type>
inline U sum(T &&v,ll S,ll E) {return accumulate(all(v,S,E),U());}
template<class T> inline auto sum(T &&v) {return sum(v,0,v.end()-v.begin()-1);}
template<class T> inline ll sz(T &&v){ return (ll)v.size(); }

//cin
struct cinutil{
    template<class T> static void cin1core(T &a){ cin>>a; }
    template<class T,class S> static void cin1core(pair<T,S> &a){
        cin1core(a.first),cin1core(a.second);
    }
    template<class... Args> static void cin1core(tuple<Args...> &a){
        cinTplRec<tuple<Args...>,sizeof...(Args)-1>()(a);
    }
    template<class T,size_t N>
    static void cin1core(array<T,N> &a){ for (int i=0; i<(int)N; ++i) cin>>a[i]; }
private:
    template<class Tpl,int i> struct cinTplRec{
        void operator()(Tpl &a){ cinTplRec<Tpl,i-1>()(a); cin1core(get<i>(a)); }
    };
    template<class Tpl> struct cinTplRec<Tpl,0>{
        void operator()(Tpl &a){ cin1core(get<0>(a)); }
    };
};
template<class T> T cin1(){ T a; cinutil::cin1core(a); return a; }
template<class... Args> tuple<Args...> cins(){ return cin1<tuple<Args...>>(); }

//cout
template<class T,class S> inline ostream &operator<<(ostream &os,const pair<T,S> &a){ return os << a.first << ' ' << a.second; }
template<class T,class S,class R> inline ostream &operator<<(ostream &os,const tuple<T,S,R> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a); }
template<class T,class S,class R,class Q> inline ostream &operator<<(ostream &os,const tuple<T,S,R,Q> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a) << ' ' << get<3>(a); }
template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i];  return os; }

inline struct{
  system_clock::time_point st = system_clock::now();
  ll operator()()const{return duration_cast<microseconds>(system_clock::now()-st).count()/1000;}
} timeget;


template<long long MOD> struct mll_{
    using Int = long long;
    using ll = long long;
    ll val_=0;
    /*---- utility ----*/
    mll_ &norm(){ return normR().normS(); }//正規化
    mll_ &normR(){ val_%=MOD; return *this; }//剰余正規化のみ
    mll_ &normS(){ if (val_<0) val_+=MOD; return *this; }//正負正規化のみ
    mll_ &normP(){ if (val_>=MOD) val_-=MOD; return *this; }//加算時正規化
    mll_ &invsg(){ val_=-val_; return normS(); }//正負反転
    ll modinv(int a){//a^-1 mod MOD
        int ypre=0,y=1,apre=MOD;
        while (a>1){
            int t=apre/a;
            apre-=a*t,swap(a,apre);
            ypre-=y*t,swap(y,ypre);
        }
        return y<0 ? y+MOD : y;
    }
    /*---- I/F ----*/
    mll_(){}
    mll_(ll v): val_(v){ norm(); }
    mll_(ll v,bool b): val_(v){} //正規化無のコンストラクタ
    Int val()const{ return (Int)val_; }
    bool isnone() const { return val_==-1; } //true:値なし
    mll_ &none() { val_=-1; return *this; } //値なしにする
    mll_ &inv(){ val_=modinv((int)val_); return *this; }
    mll_ &operator+=(mll_ b){ val_+=b.val_; return normP(); }
    mll_ &operator-=(mll_ b){ val_-=b.val_; return normS(); }
    mll_ &operator*=(mll_ b){ val_*=b.val_; return normR(); }
    mll_ &operator/=(mll_ b){ return *this*=b.inv(); }
    mll_ &operator+=(ll b){ return *this+=mll_(b); }
    mll_ &operator-=(ll b){ return *this-=mll_(b); }
    mll_ &operator*=(ll b){ return *this*=mll_(b); }
    mll_ &operator/=(ll b){ return *this/=mll_(b); }
    mll_ operator-()const{ return mll_(*this).invsg(); }
    mll_ operator+(mll_ b)const{ return mll_(*this)+=b; }
    mll_ operator-(mll_ b)const{ return mll_(*this)-=b; }
    mll_ operator*(mll_ b)const{ return mll_(*this)*=b; }
    mll_ operator/(mll_ b)const{ return mll_(*this)/=b; }
    mll_ operator+(ll b)const{ return mll_(*this)+=b; }
    mll_ operator-(ll b)const{ return mll_(*this)-=b; }
    mll_ operator*(ll b)const{ return mll_(*this)*=b; }
    mll_ operator/(ll b)const{ return mll_(*this)/=b; }
    friend mll_ operator+(ll a,mll_ b){ return b+a; }
    friend mll_ operator-(ll a,mll_ b){ return -b+a; }
    friend mll_ operator*(ll a,mll_ b){ return b*a; }
    friend mll_ operator/(ll a,mll_ b){ return mll_(a)/b; }
    bool operator==(mll_ b)const{ return val_==b.val_; }
    bool operator!=(mll_ b)const{ return val_!=b.val_; }
    bool operator==(ll b)const{ return *this==mll_(b); }
    bool operator!=(ll b)const{ return *this!=mll_(b); }
    friend bool operator==(ll a,mll_ b){ return mll_(a)==b; }
    friend bool operator!=(ll a,mll_ b){ return mll_(a)!=b; }
    friend ostream &operator<<(ostream &os,mll_  a){ return os << a.val_; }
    friend istream &operator>>(istream &is,mll_ &a){ return is >> a.val_; }
    mll_ pow(ll k)const{
        mll_ ret(1,false),a(*this);
        for (; k>0; k>>=1,a*=a) if (k&1)ret*=a;
        return ret;
    }
    static constexpr int mod() { return MOD; }
    //enum{ modll=MOD };
};


template<class T> struct Vector: vector<T>{
  using Int = long long;
  using vT=vector<T>;
  using cvT=const vector<T>;
  using cT=const T;
  using vT::vT; //親クラスのコンストラクタの隠蔽を回避
  using vT::begin,vT::end,vT::insert,vT::erase;
  auto it(Int i){ return begin()+i; }
  auto it(Int i)const{ return begin()+i; }
  Vector(cvT& b):vT(b){}
  Vector(vT&& b):vT(move(b)){}
  Vector(int n,cT& x):vT(n,x){}// ┬ 型推論のためラッパー
  Vector(long long n,cT& x):vT(n,x){}
  template<class S> Vector(const Vector<S>& b):vT(b.begin(),b.end()){}
  template<class S> Vector(const vector<S>& b):vT(b.begin(),b.end()){}
  Vector(Int n,T s,T d){ iota(n,s,d); }
  Vector(Int n,function<T(Int)> g):vT(n){ for(Int i=0;i<n;++i) (*this)[i]=g(i); }
  Vector &operator+=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]+=b[i]; return *this; }
  Vector &operator-=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]-=b[i]; return *this; }
  Vector &operator*=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]*=b[i]; return *this; }
  Vector &operator/=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]/=b[i]; return *this; }
  Vector &operator%=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]%=b[i]; return *this; }
  Vector &operator+=(const Vector<T> &b){ return *this+=(cvT&)b; }
  Vector &operator-=(const Vector<T> &b){ return *this-=(cvT&)b; }
  Vector &operator*=(const Vector<T> &b){ return *this*=(cvT&)b; }
  Vector &operator/=(const Vector<T> &b){ return *this/=(cvT&)b; }
  Vector &operator%=(const Vector<T> &b){ return *this%=(cvT&)b; }
  Vector operator+(cvT &b){ return Vector(*this)+=b; }
  Vector operator-(cvT &b){ return Vector(*this)-=b; }
  Vector operator*(cvT &b){ return Vector(*this)*=b; }
  Vector operator/(cvT &b){ return Vector(*this)/=b; }
  Vector operator%(cvT &b){ return Vector(*this)%=b; }
  Vector operator+(const Vector<T> &b){ return Vector(*this)+=b; }
  Vector operator-(const Vector<T> &b){ return Vector(*this)-=b; }
  Vector operator*(const Vector<T> &b){ return Vector(*this)*=b; }
  Vector operator/(const Vector<T> &b){ return Vector(*this)/=b; }
  Vector operator%(const Vector<T> &b){ return Vector(*this)%=b; }
  template<class S> Vector &operator+=(S x){ for(T &e: *this) e+=x;  return *this; }
  template<class S> Vector &operator-=(S x){ for(T &e: *this) e-=x;  return *this; }
  template<class S> Vector &operator*=(S x){ for(T &e: *this) e*=x;  return *this; }
  template<class S> Vector &operator/=(S x){ for(T &e: *this) e/=x;  return *this; }
  template<class S> Vector &operator%=(S x){ for(T &e: *this) e%=x;  return *this; }
  template<class S> Vector operator+(S x)const{ return Vector(*this)+=x; }
  template<class S> Vector operator-(S x)const{ return Vector(*this)-=x; }
  template<class S> Vector operator*(S x)const{ return Vector(*this)*=x; }
  template<class S> Vector operator/(S x)const{ return Vector(*this)/=x; }
  template<class S> Vector operator%(S x)const{ return Vector(*this)%=x; }
  Vector &operator--(int){ return *this-=1; }
  Vector &operator++(int){ return *this+=1; }
  Vector operator-()const{ return Vector(*this)*=-1; }
  template<class S> friend Vector operator-(S x,const Vector &a){ return -a+=x; }
  T& at(Int i){ assert(i>=0); if(n()<=i)vT::resize(i+1); return vT::operator[](i); }
  Vector slice(Int l,Int r,Int d=1)const{
    Vector ret;
    for(Int i=l;(d>0&&i<=r)||(d<0&&r<=i);i+=d) ret.push_back((*this)[i]);
    return ret;
  }
  Int size()const{ return (Int)vT::size(); }
  Int n()const{ return size(); }
  Vector &push_back(cT& x,Int n=1){ for(Int i=0;i<n;++i){ vT::push_back(x); } return *this; }
  Vector &pop_back(Int n=1){ for(Int i=0;i<n;++i){ vT::pop_back(); } return *this; }
  Vector &push_front(cT& x,Int n=1){ this->insert(0,x,n); return *this; }
  Vector &pop_front(Int n=1){ erase(0,n-1); return *this; }
  T pull_back(){ T x=move(vT::back()); vT::pop_back(); return x; }
  T pull_front(){ T x=move(vT::front()); erase(0); return x; }
  Vector &insert(Int i,cT& x,Int n=1){ insert(it(i),n,x); return *this; }
  Vector &insert(Int i,cvT& b){ insert(it(i),b.begin(),b.end()); return *this; }
  Vector &erase(Int i){ erase(it(i)); return *this; }
  Vector &erase(Int l,Int r){ erase(it(l),it(r+1)); return *this; }
  Vector &erase(const Vector<Int> &idxs){
      for (Int I=0; I<idxs.n(); ++I){
          Int l=idxs[I]+1, r = (I<idxs.n()-1) ? idxs[I+1] : this->n();
          copy(it(l),it(r),it(l-I-1));//[l,r)を前にI+1個ずらす
      }
      vT::resize(this->n()-idxs.n());
      return *this;
  }
  Vector &eraseall(cT& x){ return eraseall(0,size()-1,x); }
  Vector &eraseall(Int l,Int r,cT& x){ erase(remove(it(l),it(r+1),x),it(r+1)); return *this; }
  template<class Pr> Vector &eraseif(Pr pr){ return eraseif(0,size()-1,pr); }
  template<class Pr> Vector &eraseif(Int l,Int r,Pr pr){ erase(remove_if(it(l),it(r+1),pr),it(r+1)); return *this; }
  Vector &concat(cvT &b,Int n=1){
    cvT B = (&b==this) ? *this : vT{};
    for(int i=0;i<n;++i) this->insert(size(),(&b==this)?B:b);
    return *this;
  }
  Vector repeat(Int n){ return Vector{}.concat(*this,n); }
  Vector &reverse(Int l=0,Int r=-1){ r+=r<0?size():0; std::reverse(it(l),it(r+1)); return *this; }
  Vector &rotate(Int m){ return rotate(0,size()-1,m); }
  Vector &rotate(Int l,Int r,Int m){ std::rotate(it(l),it(m),it(r+1)); return *this; }
  Vector &sort(Int l=0,Int r=-1){ r+=r<0?size():0; std::sort(it(l),it(r+1)); return *this; }
  Vector &rsort(Int l=0,Int r=-1){ return sort(l,r).reverse(l,r); }
  template<class Pr> Vector &sort(Pr pr){ return sort(0,size()-1,pr); }
  template<class Pr> Vector &sort(Int l,Int r,Pr pr){ std::sort(it(l),it(r+1),pr); return *this; }
  template<int key> Vector &sortbykey(Int l=0,Int r=-1){
    r+=r<0?size():0;
    sort(l,r,[](cT &x,cT &y){return get<key>(x)<get<key>(y);});
    return *this;
  }
  Vector &uniq(){ erase(unique(begin(),end()),end()); return *this; }
  Vector &sortq(){ return sort().uniq(); }
  Vector &fill(cT& x){ return fill(0,size()-1,x); }
  Vector &fill(Int l,Int r,cT& x){ std::fill(it(l),it(r+1),x); return *this; }
  Vector &copy(Int i,cvT &b,Int n=1){//A[i]スタートでbをn回分コピー
      for (int t=0; t<n; ++t) for (int j=0; j<(int)b.size(); ++j){
          if (i>=size()) return *this;
          if (i>=0) (*this)[i]=b[j];
          i++;
      }
      return *this;
  }
  template<class S=Int> Vector &iota(Int n,T s=0,S d=1){
    vT::resize(n);
    if(n==0) return *this;
    (*this)[0]=s;
    for(int i=1;i<n;++i) (*this)[i]=(*this)[i-1]+d;
    return *this;
  }
  Int count(cT& x)const{ return count(0,size()-1,x); }
  Int count(Int l,Int r,cT& x)const{ return Int(std::count(it(l),it(r+1),x)); }
  template<class Pr> Int countif(Pr pr)const{ return countif(0,size()-1,pr); }
  template<class Pr> Int countif(Int l,Int r,Pr pr)const{ return Int(count_if(it(l),it(r+1),pr)); }
  Int find(cT& x)const{ return find(0,size()-1,x); }
  Int find(Int l,Int r,cT& x)const{ return Int(std::find(it(l),it(r+1),x)-begin()); }
  Int rfind(cT& x)const{ return rfind(0,size()-1,x); }
  Int rfind(Int l,Int r,cT& x)const{
      for (int i=r;i>=l;--i) if ((*this)[i]==x) return i;
      return l-1;
  }
  template<class Pr> Int findif(Pr pr)const{ return findif(0,size()-1,pr); }
  template<class Pr> Int findif(Int l,Int r,Pr pr)const{ return Int(find_if(it(l),it(r+1),pr)-begin()); }
  Vector<Int> findall(cT& x)const{ return findall(0,size()-1,x); }
  Vector<Int> findall(Int l,Int r,cT& x)const{ return findallif(l,r,[&](cT& y){return y==x;}); }
  template<class Pr> Vector<Int> findallif(Pr pr)const{ return findallif(0,size()-1,pr); }
  template<class Pr> Vector<Int> findallif(Int l,Int r,Pr pr)const{
    Vector<Int> ret;
    for(Int i=l;i<=r;++i) if(pr((*this)[i])) ret.push_back(i);
    return ret;
  }
  Int  flooridx(cT& x)const{ return Int(upper_bound(begin(),end(),x)-begin()-1); }
  Int   ceilidx(cT& x)const{ return Int(lower_bound(begin(),end(),x)-begin()); }
  Int  leftnmof(cT& x)const{ return flooridx(x)+1; }
  Int rightnmof(cT& x)const{ return size()-ceilidx(x); }
  bool contains(cT& x)const{ Int i=flooridx(x); return i>=0 && (*this)[i]==x; }
  template<class Pr> Int  flooridx(cT& x,Pr pr)const{ return Int(upper_bound(begin(),end(),x,pr)-begin()-1); }
  template<class Pr> Int   ceilidx(cT& x,Pr pr)const{ return Int(lower_bound(begin(),end(),x,pr)-begin()); }
  template<class Pr> Int  leftnmof(cT& x,Pr pr)const{ return flooridx(x,pr)+1; }
  template<class Pr> Int rightnmof(cT& x,Pr pr)const{ return size()-ceilidx(x,pr); }
  template<class Pr> bool contains(cT& x,Pr pr)const{ Int i=flooridx(x,pr); return i>=0 && (*this)[i]==x; }

  template<class S> using VV    = Vector<Vector<S>>; template<class S> using sVV    = vector<vector<S>>;
  template<class S> using VVV   = Vector<VV<S>>;     template<class S> using sVVV   = vector<sVV<S>>;
  template<class S> using VVVV  = Vector<VVV<S>>;    template<class S> using sVVVV  = vector<sVVV<S>>;
  template<class S> using VVVVV = Vector<VVVV<S>>;   template<class S> using sVVVVV = vector<sVVVV<S>>;
  auto tostd()const{ return tov(*this); }
  template <class S> static vector<S> tov(const Vector<S>&v){ return v; }
  template <class S> static sVV<S>    tov(const VV<S>    &v){ sVV<S>    ret; for(auto&& e:v) ret.push_back(e);         return ret; }
  template <class S> static sVVV<S>   tov(const VVV<S>   &v){ sVVV<S>   ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
  template <class S> static sVVVV<S>  tov(const VVVV<S>  &v){ sVVVV<S>  ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
  template <class S> static sVVVVV<S> tov(const VVVVV<S> &v){ sVVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
};


#if 0
#define MODLL (1000000007LL)
#else
#define MODLL (998244353LL)
#endif
using mll = mll_<MODLL>;
//using mll = fraction;



namespace SolvingSpace{

template<class T> using vector = Vector<T>;
using    vll=vector<   ll>; using    vmll=vector<   mll>; using    vdd=vector<   dd>;
using   vvll=vector<  vll>; using   vvmll=vector<  vmll>; using   vvdd=vector<  vdd>;
using  vvvll=vector< vvll>; using  vvvmll=vector< vvmll>; using  vvvdd=vector< vvdd>;
using vvvvll=vector<vvvll>; using vvvvmll=vector<vvvmll>; using vvvvdd=vector<vvvdd>;
using   vpll=vector<  pll>; using    vtll=vector<   tll>; using   vqll=vector<  qll>;
using  vvpll=vector< vpll>; using   vvtll=vector<  vtll>; using  vvqll=vector< vqll>;
using vss=vector<string>;
template<class T> vector<T> cinv(ll nm){ return vector<T>(nm,[](ll i){ (void)i; return cin1<T>(); }); }
template<class T> vector<vector<T>> cinvv(ll H,ll W){ return vector<vector<T>>(H,[&](ll i){ (void)i; return cinv<T>(W); }); }

/*■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■*/



#ifdef _MSC_VER
#include <intrin.h>
#endif
struct primefactorization{
    using ull = unsigned long long;
    ll fmax=0; //篩のmax
    vll mnpr; //最小素因数表
    vll primes; //素数リスト
    vpll pfact; //素因数分解結果 例:{<2,3>,<3,1>,<5,2>}→2^3×3^1×5^2
    vll divs; //約数列挙結果
    primefactorization(){} //篩無し
    primefactorization(ll fmx){ init(fmx); } //篩使用
    void init(ll fmx){ //エラトステネスの篩で最小素因数表+素数リストを作成
        fmax=fmx;
        mnpr.resize(fmx+1);
        primes.reserve(fmx/10+1);
        for (ll i=2; i<=fmax; i++){
            if (mnpr[i]) continue;
            primes.push_back(i);
            mnpr[i]=i;
            for (ll j=i*i; j<=fmax; j+=i) if (mnpr[j]==0) mnpr[j]=i;
        }
    }
    vll &primelist(){ return primes; }
    bool isprime(ll a){
        if (a<=fmax) return mnpr[a]==a;
        else return MillerRabin((ull)a);
    }
    vpll &operator()(ll a){//素因数分解
        return this->pfact=Factorization(a);
    }
    vll pfactlist(ll a){//素因数リスト(指数は返さない)
        (*this)(a);//素因数分解実行
        vll ret;
        for (auto&&[p,_]:this->pfact) ret.push_back(p);
        return ret;
    }
    /*!
    @brief   素因数分解結果pfactから約数列挙divsを得る
    @details e乗しても約数のもののみ raise=trueならe乗後を返す
    */
    static void divisorCore(const vpll &pfact,vll &divs,ll e=1,bool raise=false){
        divs.assign(1,1);
        for (auto [p,nm]: pfact){
            ll prenm=(ll)divs.size();
            for (int i=0; i<prenm*(nm/e); ++i) divs.push_back(divs[i]*p);
        }
        if (raise){ //e乗
            for (auto&& y: divs){
                for (ll i=1,yorg=y; i<e; ++i) y*=yorg;
            }
        }
    }
    vll &divisor(ll a,ll e=1,bool raise=false){//約数列挙 e乗して約数のもの
        (*this)(a);//素因数分解実行
        divisorCore(this->pfact,this->divs,e,raise);//約数列挙コア
        return divs;
    }
    vpll Factorization(ll a){
        if (a<(1LL<<31)) return FactorizationCore((int)a);
        else             return FactorizationCore(a);
    }
    template<class T> vpll FactorizationCore(T a){//素因数分解
        vpll ret;
        if (a<=1) return ret;
        if (a<=fmax){//篩の範囲→osa_k法
            for (; mnpr[a]!=a; a/=(T)mnpr[a]) Add(ret,mnpr[a]);
            Add(ret,a);
            return ret;
        }
        if (MillerRabin((ull)a)){//素数の時
            ret.emplace_back(a,1);
            return ret;
        }
        //それ以外→ロー法で再帰
        ll y=RhoAlgorithm((ull)a);
        vpll ret1=Factorization(y);
        vpll ret2=Factorization(a/y);
        ll i=0,j=0,len1=(ll)ret1.size(),len2=(ll)ret2.size();
        while (i<len1 || j<len2){
            if (j==len2 || (i<len1 && ret1[i]<ret2[j])) AddBlock(ret,ret1[i++]);
            else                                        AddBlock(ret,ret2[j++]);
        }
        return ret;
    }
    bool MillerRabin(ull n){//true:素数 定数は http://miller-rabin.appspot.com/ より
        auto modpow=[&](ull a,ull b,ull m){ //a^b (mod m)
            ull r=1;
            for (; b>0; b>>=1,a=ModMul(a,a,m)) if (b&1) r=ModMul(r,a,m);
            return r;
        };
        auto f=[&](ull a){//true:素数かもしれない、false:合成数確定
            a%=n;
            if (a==0) return true;
            ull t=n-1,s=0;
            while (t%2==0) t>>=1,s++;
            ull x=modpow(a,t,n);
            if (x==1 || x==n-1) return true;
            for (ull r=1; r<s; ++r){
                if ((x=ModMul(x,x,n))==n-1) return true;
            }
            return false;
        };
        if (n<=1) return false;
        if (n==2) return true;
        if (n%2==0) return false;
        if (n<4759123141) return f(2)&&f(7)&&f(61);
        return f(2)&&f(325)&&f(9375)&&f(28178)&&f(450775)&&f(9780504)&&f(1795265022);
    }
    ll RhoAlgorithm(ull n){//約数の1つを返す 素数はNG(無限ループする)
        if ((n&1)==0) return 2;
        for (ull c=1,x=1;; ++c){
            auto f=[&](ull x){ return (ModMul(x,x,n)+c)%n; };
            ull y=x,g=1;
            while (g==1){
                x=f(x);
                y=f(f(y));
                g=gcd(abs(ll(x-y)),n);
            }
            if (g<n) return (ll)g;
        }
    }
    void AddBlock(vpll &v,pll &p){
        if (!v.empty() and v.back().first==p.first) v.back().second+=p.second;
        else v.push_back(p);
    }
    void Add(vpll &v,ll x){
        if (!v.empty() and v.back().first==x) v.back().second++;
        else v.emplace_back(x,1);
    }
    inline ull ModMul(ull a,ull b,ull m){ //a*b%m
        if (a < 1ULL<<32 && b < 1ULL<<32) return a*b%m;
#ifdef _MSC_VER
        ull upper,lower,rem;
        lower=_umul128(a,b,&upper);
        _udiv128(upper,lower,m,&rem);
        return rem;
#else
        return (ull)((unsigned __int128)(a)*b%m);
#endif
    }
};
/*
- -------- 定義 -------- M:篩最大値
primefactorization pr;
primefactorization pr(M);
- -------- 素数判定 -------- 篩内なら使用、篩外ならミラーラビンで判定
bool b=pr.isprime(x);
- -------- 素数リスト --------  {2,3,5,7,11,…}
vll &primes=pr.primelist();
- -------- 素因数分解 --------
vpll &pfact=pr(x);
.      ↑例: x=1  → {}
.            x=2  → {<2,1>} //2^1の意味
.            x=600→ {<2,3>,<3,1>,<5,2>} //2^3×3^1×5^2 素因数昇順
- -------- 素因数分解(指数なし) -------- 例:x=600→{2,3,5} (600=2^3×3^1×5^2)
vll plist=pr.pfactlist(x);
- -------- 約数列挙 -------- 例:x=12→{1,2,4,3,6,12}<未ソート>
vll &div=pr.divisor(x);
vll &div=pr.divisor(x,e);      //e乗が約数のものを列挙
vll &div=pr.divisor(x,e,true); //約数でe乗数のものを列挙
*/


void cin2solve()
{
    /*
    長さLのサイクル
    全間隔がkの倍数のとき→(L-1)回ダメージ
    そうでないとき       →0
    
    サイクルごとに全間隔のgcd g
    gの約数にL-1配る
    */
    auto N=cin1<ll>();
    auto P=cinv<ll>(N);
    P--;

    primefactorization pr(N+10);

    vvll cycles;
    {
        vll seen(N);
        rep(st,0,N-1){
            if (seen[st])continue;
            seen[st]=1;
            ll v=st;
            vll cycle;
            while (true){
                cycle.push_back(v);
                ll nv=P[v];
                if (seen[nv])break;
                seen[nv]=1;
                v=nv;
            }
            cycles.push_back(move(cycle));
        }
    }

    vll ans(N);
    for (auto&& cycle: cycles){
        if (cycle.size()==1) continue;
        //全間隔のgcd求める g
        ll g=0;
        rep(i,1,sz(cycle)-1){
            ll pv=cycle[i-1];
            ll cv=cycle[i];
            g=gcd(g,abs(pv-cv));
        }
        //gの約数y
        vll &div=pr.divisor(g);
        for (auto&& y: div){
            ans[y]+=sz(cycle)-1;
        }

    }

    ans.pop_front();
    for (auto&& e: ans) cout << e << '\n';

    return;
}

}//SolvingSpace

//////////////////////////////////////////

int main(){
#if defined(RANDOM_TEST)
    SolvingSpace::generand();
#else
  #if 1
    //SolvingSpace::labo();
    SolvingSpace::cin2solve();
  #else
    ll t;  cin >> t;
    rep(i,0,t-1){
        SolvingSpace::cin2solve();
    }
  #endif
#endif
    cerr << timeget() <<"ms"<< '\n';
    return 0;
}
0