結果
| 問題 | No.3442 Good Vertex Connectivity |
| コンテスト | |
| ユーザー |
kidodesu
|
| 提出日時 | 2026-02-06 23:06:17 |
| 言語 | PyPy3 (7.3.17) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,732 bytes |
| 記録 | |
| コンパイル時間 | 339 ms |
| コンパイル使用メモリ | 82,748 KB |
| 実行使用メモリ | 135,508 KB |
| 最終ジャッジ日時 | 2026-02-06 23:06:58 |
| 合計ジャッジ時間 | 40,655 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 WA * 4 TLE * 8 -- * 56 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
class SortedMultiset():
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self):
for i in self.a:
for j in i: yield j
def __reversed__(self):
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x):
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x):
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a, b: int, i: int):
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x):
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x):
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x):
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x):
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int):
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1):
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class segtree:
n = 1
size = 1
log = 2
d = [0]
op = None
e = 10**15
def __init__(self, V, OP, E):
self.n = len(V)
self.op = OP
self.e = E
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.d = [E for i in range(2 * self.size)]
for i in range(self.n):
self.d[self.size + i] = V[i]
for i in range(self.size - 1, 0, -1):
self.update(i)
def set(self, p, x):
assert 0 <= p and p < self.n
p += self.size
self.d[p] = x
for i in range(1, self.log + 1):
self.update(p >> i)
def get(self, p):
assert 0 <= p and p < self.n
return self.d[p + self.size]
def prod(self, l, r):
assert 0 <= l and l <= r and r <= self.n
sml = self.e
smr = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
sml = self.op(sml, self.d[l])
l += 1
if r & 1:
smr = self.op(self.d[r - 1], smr)
r -= 1
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.d[1]
def max_right(self, l, f):
assert 0 <= l and l <= self.n
assert f(self.e)
if l == self.n:
return self.n
l += self.size
sm = self.e
while 1:
while l % 2 == 0:
l >>= 1
if not (f(self.op(sm, self.d[l]))):
while l < self.size:
l = 2 * l
if f(self.op(sm, self.d[l])):
sm = self.op(sm, self.d[l])
l += 1
return l - self.size
sm = self.op(sm, self.d[l])
l += 1
if (l & -l) == l:
break
return self.n
def min_left(self, r, f):
assert 0 <= r and r <= self.n
assert f(self.e)
if r == 0:
return 0
r += self.size
sm = self.e
while 1:
r -= 1
while r > 1 and (r % 2):
r >>= 1
if not (f(self.op(self.d[r], sm))):
while r < self.size:
r = 2 * r + 1
if f(self.op(self.d[r], sm)):
sm = self.op(self.d[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.d[r], sm)
if (r & -r) == r:
break
return 0
def update(self, k):
self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])
def __str__(self):
return str([self.get(i) for i in range(self.n)])
n = int(input())
node = [[] for _ in range(n)]
for _ in range(n-1):
u, v = list(map(lambda x: int(x)-1, input().split()))
node[u].append(v)
node[v].append(u)
def dubling(): #木のk番目の上の頂点を管理
dub = [[-1 for _ in range(n)] for _ in range(30)] #dub[i][j]:頂点jから2**i移動した点
for i in range(n):
if P[i] != -1: dub[0][i] = P[i]
for i in range(1, 30):
for j in range(n):
if dub[i-1][j] == -1:
dub[i][j] = -1
else:
dub[i][j] = dub[i-1][dub[i-1][j]]
return dub
def move_point(now, k): #dubling配列を用いて、点nowから深さがk小さい点を出力
if D[now] < k:
return -1
for i in range(29, -1, -1):
if k >> i & 1:
now = dub[i][now]
return now
P = [-1] * n
D = [-1] * n
D[0] = 0
S = [0]
while S:
now = S.pop()
for nxt in node[now]:
if D[nxt] == -1:
P[nxt] = now
D[nxt] = D[now] + 1
S.append(nxt)
dub = dubling()
def LCA(u, v):
du = D[u]
dv = D[v]
if du > dv:
u, v = v, u
du, dv = dv, du
a = dv - du
now = 0
while a:
if a & 1<<now:
v = dub[now][v]
a -= 1<<now
now += 1
if u == v: return u
for i in range(29, -1, -1):
if dub[i][u] != dub[i][v]:
u, v = dub[i][u], dub[i][v]
return dub[0][u]
def dist(u, v):
p = LCA(u, v)
return D[u] + D[v] - 2 * D[p]
C = list(map(int, input().split()))
S = [0]
M = []
F = [[-1, -1] for _ in range(n)]
E = [0] * 2*n
st = segtree([0] * (2*n), lambda a, b: a + b, 0)
sl = SortedMultiset([])
while S:
now = S.pop()
mow = now if now >= 0 else ~now
if F[mow][0] == -1:
F[mow][0] = len(M)
F[mow][1] = len(M)
M.append(mow)
if now >= 0:
for nxt in node[now]:
if P[now] != nxt:
S.append(~now)
S.append(nxt)
pre = -1
pi = -1
for i in range(2*n-2):
now = M[i]
if C[now] and i in F[now]:
if pre != -1:
st.set(i, dist(pre, now))
else:
pi = now
sl.add(i)
pre = now
if pi != -1:
st.set(pi, dist(M[pi], pre))
#print(F)
#print(M)
for _ in range(int(input())):
T = list(map(int, input().split()))
if T[0] == 1:
u = T[1]-1
if not C[u]:
for v in set(F[u]):
sl.add(v)
idx = sl.index(v)
pu = sl[idx-1]
pv = sl[(idx+1) % len(sl)]
st.set(v, dist(M[pu], M[v]))
st.set(pv, dist(M[v], M[pv]))
else:
for v in set(F[u]):
sl.discard(v)
if sl:
idx = sl.index(v)
pu = sl[idx-1]
pv = sl[idx % len(sl)]
st.set(v, 0)
st.set(pv, dist(M[pu], M[pv]))
C[u] ^= 1
else:
u, v = T[1:]
u, v = u-1, v-1
if u == v:
fs, ft = F[v]
f = 1
else:
p = LCA(u, v)
if p == v:
v = move_point(u, D[u] - D[v] - 1)
f = 0
else:
f = 1
fs, ft = F[v]
if f:
if sl:
idx0 = sl.index(fs)
idx1 = sl.index_right(ft) - 1
#print("Hi", sl, idx0, idx1)
if idx0 > idx1:
print(0)
else:
ans = st.prod(sl[idx0], sl[idx1]+1)
ans += dist(M[sl[idx0]], M[sl[idx1]]) - st.get(sl[idx0])
print(ans//2+1)
else:
print(0)
else:
if sl:
idx0 = sl.index(fs)
idx1 = sl.index_right(ft)
#print(sl, idx0, idx1)
if (idx0, idx1) == (0, len(sl)):
print(0)
elif idx0 == idx1:
print(st.prod(0, 2*n) // 2 + 1)
else:
if idx1 == len(sl):
ans = st.prod(0, 2*n) - st.prod(sl[idx0], 2*n)
else:
ans = st.prod(0, 2*n) - st.prod(sl[idx0], sl[idx1])
ans += dist(M[sl[(idx0-1)%len(sl)]], M[sl[idx1%len(sl)]]) - st.get(sl[idx1%len(sl)])
print(ans//2+1)
else:
print(0)
#print(*[st.get(i) for i in range(2*n)])
kidodesu