結果

問題 No.3443 Sum of (Tree Distances)^K 1
コンテスト
ユーザー askr58
提出日時 2026-02-06 23:19:20
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 1,783 ms / 2,000 ms
コード長 23,816 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 7,052 ms
コンパイル使用メモリ 369,940 KB
実行使用メモリ 35,292 KB
最終ジャッジ日時 2026-02-06 23:19:59
合計ジャッジ時間 37,762 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 47
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <bits/stdc++.h>
using namespace std;
using ll=long long;
#include <cassert>
#include <vector>
using namespace std;

// Begin include: "formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
	using vector<mint>::vector;
	using FPS = FormalPowerSeries;

	FPS &operator+=(const FPS &r) {
		if (r.size() > this->size()) this->resize(r.size());
		for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
		return *this;
	}

	FPS &operator+=(const mint &r) {
		if (this->empty()) this->resize(1);
		(*this)[0] += r;
		return *this;
	}

	FPS &operator-=(const FPS &r) {
		if (r.size() > this->size()) this->resize(r.size());
		for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
		return *this;
	}

	FPS &operator-=(const mint &r) {
		if (this->empty()) this->resize(1);
		(*this)[0] -= r;
		return *this;
	}

	FPS &operator*=(const mint &v) {
		for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
		return *this;
	}

	FPS &operator/=(const FPS &r) {
		if (this->size() < r.size()) {
			this->clear();
			return *this;
		}
		int n = this->size() - r.size() + 1;
		if ((int)r.size() <= 64) {
			FPS f(*this), g(r);
			g.shrink();
			mint coeff = g.back().inverse();
			for (auto &x : g) x *= coeff;
			int deg = (int)f.size() - (int)g.size() + 1;
			int gs = g.size();
			FPS quo(deg);
			for (int i = deg - 1; i >= 0; i--) {
				quo[i] = f[i + gs - 1];
				for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
			}
			*this = quo * coeff;
			this->resize(n, mint(0));
			return *this;
		}
		return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
	}

	FPS &operator/=(const mint &v) {
		for (int k = 0; k < (int)this->size(); k++) (*this)[k] /= v;
		return *this;
	}

	FPS &operator%=(const FPS &r) {
		*this -= *this / r * r;
		shrink();
		return *this;
	}

	FPS operator+(const FPS &r) const { return FPS(*this) += r; }
	FPS operator+(const mint &v) const { return FPS(*this) += v; }
	FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
	FPS operator-(const mint &v) const { return FPS(*this) -= v; }
	FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
	FPS operator*(const mint &v) const { return FPS(*this) *= v; }
	FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
	FPS operator/(const mint &v) const { return FPS(*this) /= v; }
	FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
	FPS operator-() const {
		FPS ret(this->size());
		for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
		return ret;
	}

	void shrink() {
		while (this->size() && this->back() == mint(0)) this->pop_back();
	}

	FPS rev() const {
		FPS ret(*this);
		reverse(begin(ret), end(ret));
		return ret;
	}

	FPS dot(FPS r) const {
		FPS ret(min(this->size(), r.size()));
		for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
		return ret;
	}

	// 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
	FPS pre(int sz) const {
		FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
		if ((int)ret.size() < sz) ret.resize(sz);
		return ret;
	}

	FPS operator>>(int sz) const {
		if ((int)this->size() <= sz) return {};
		FPS ret(*this);
		ret.erase(ret.begin(), ret.begin() + sz);
		return ret;
	}

	FPS operator<<(int sz) const {
		FPS ret(*this);
		ret.insert(ret.begin(), sz, mint(0));
		return ret;
	}

	FPS diff() const {
		const int n = (int)this->size();
		FPS ret(max(0, n - 1));
		mint one(1), coeff(1);
		for (int i = 1; i < n; i++) {
			ret[i - 1] = (*this)[i] * coeff;
			coeff += one;
		}
		return ret;
	}

	FPS integral() const {
		const int n = (int)this->size();
		FPS ret(n + 1);
		ret[0] = mint(0);
		if (n > 0) ret[1] = mint(1);
		auto mod = mint::get_mod();
		for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
		for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
		return ret;
	}

	mint eval(mint x) const {
		mint r = 0, w = 1;
		for (auto &v : *this) r += w * v, w *= x;
		return r;
	}

	FPS log(int deg = -1) const {
		assert(!(*this).empty() && (*this)[0] == mint(1));
		if (deg == -1) deg = (int)this->size();
		return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
	}

	FPS pow(int64_t k, int deg = -1) const {
		const int n = (int)this->size();
		if (deg == -1) deg = n;
		if (k == 0) {
			FPS ret(deg);
			if (deg) ret[0] = 1;
			return ret;
		}
		for (int i = 0; i < n; i++) {
			if ((*this)[i] != mint(0)) {
				mint rev = mint(1) / (*this)[i];
				FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
				ret *= (*this)[i].pow(k);
				ret = (ret << (i * k)).pre(deg);
				if ((int)ret.size() < deg) ret.resize(deg, mint(0));
				return ret;
			}
			if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
		}
		return FPS(deg, mint(0));
	}

	static void *ntt_ptr;
	static void set_fft();
	FPS &operator*=(const FPS &r);
	void ntt();
	void intt();
	void ntt_doubling();
	static int ntt_pr();
	FPS inv(int deg = -1) const;
	FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
// End include: "formal-power-series.hpp"

// [x^n] f(x)^i g(x) を i=0,1,...,m で列挙
// n = (f の次数) - 1
template <typename mint>
FormalPowerSeries<mint> pow_enumerate(FormalPowerSeries<mint> f,
                                      FormalPowerSeries<mint> g = {1},
                                      int m = -1) {
  using fps = FormalPowerSeries<mint>;
  int n = f.size() - 1, k = 1;
  g.resize(n + 1);
  if (m == -1) m = n;
  int h = 1;
  while (h < n + 1) h *= 2;
  fps P((n + 1) * k), Q((n + 1) * k), nP, nQ, buf, buf2;
  for (int i = 0; i <= n; i++) P[i * k + 0] = g[i];
  for (int i = 0; i <= n; i++) Q[i * k + 0] = -f[i];
  Q[0] += 1;
  while (n) {
    mint inv2 = mint{2}.inverse();
    mint w = mint{fps::ntt_pr()}.pow((mint::get_mod() - 1) / (2 * k));
    mint iw = w.inverse();

    buf2.resize(k);
    auto ntt_doubling = [&]() {
      copy(begin(buf), end(buf), begin(buf2));
      buf2.intt();
      mint c = 1;
      for (int i = 0; i < k; i++) buf2[i] *= c, c *= w;
      buf2.ntt();
      copy(begin(buf2), end(buf2), back_inserter(buf));
    };

    nP.clear(), nQ.clear();
    for (int i = 0; i <= n; i++) {
      buf.resize(k);
      copy(begin(P) + i * k, begin(P) + (i + 1) * k, begin(buf));
      ntt_doubling();
      copy(begin(buf), end(buf), back_inserter(nP));

      buf.resize(k);
      copy(begin(Q) + i * k, begin(Q) + (i + 1) * k, begin(buf));
      if (i == 0) {
        for (int j = 0; j < k; j++) buf[j] -= 1;
        ntt_doubling();
        for (int j = 0; j < k; j++) buf[j] += 1;
        for (int j = 0; j < k; j++) buf[k + j] -= 1;
      } else {
        ntt_doubling();
      }
      copy(begin(buf), end(buf), back_inserter(nQ));
    }
    nP.resize(2 * h * 2 * k);
    nQ.resize(2 * h * 2 * k);
    fps p(2 * h), q(2 * h);

    w = mint{fps::ntt_pr()}.pow((mint::get_mod() - 1) / (2 * h));
    iw = w.inverse();
    vector<int> btr;
    if (n % 2) {
      btr.resize(h);
      for (int i = 0, lg = __builtin_ctz(h); i < h; i++) {
        btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (lg - 1));
      }
    }

    for (int j = 0; j < 2 * k; j++) {
      p.assign(2 * h, 0);
      q.assign(2 * h, 0);
      for (int i = 0; i < h; i++) {
        p[i] = nP[i * 2 * k + j], q[i] = nQ[i * 2 * k + j];
      }
      p.ntt(), q.ntt();
      for (int i = 0; i < 2 * h; i += 2) swap(q[i], q[i + 1]);
      for (int i = 0; i < 2 * h; i++) p[i] *= q[i];
      for (int i = 0; i < h; i++) q[i] = q[i * 2] * q[i * 2 + 1];
      if (n % 2 == 0) {
        for (int i = 0; i < h; i++) p[i] = (p[i * 2] + p[i * 2 + 1]) * inv2;
      } else {
        mint c = inv2;
        buf.resize(h);
        for (int i : btr) buf[i] = (p[i * 2] - p[i * 2 + 1]) * c, c *= iw;
        swap(p, buf);
      }
      p.resize(h), q.resize(h);
      p.intt(), q.intt();
      for (int i = 0; i < h; i++) nP[i * 2 * k + j] = p[i];
      for (int i = 0; i < h; i++) nQ[i * 2 * k + j] = q[i];
    }
    nP.resize((n / 2 + 1) * 2 * k);
    nQ.resize((n / 2 + 1) * 2 * k);
    swap(P, nP), swap(Q, nQ);
    n /= 2, h /= 2, k *= 2;
  }

  fps S{begin(P), begin(P) + k};
  fps T{begin(Q), begin(Q) + k};
  S.intt(), T.intt(), T[0] -= 1;
  if (f[0] == 0) return S.rev().pre(m + 1);
  return (S.rev() * (T + (fps{1} << k)).rev().inv(m + 1)).pre(m + 1);
}

/*
// 別バージョン
// [x^n] f(x)^i g(x) を i=0,1,...,m で列挙
// n = (f の次数) - 1
FormalPowerSeries<mint> pow_enumerate(FormalPowerSeries<mint> f,
                                      FormalPowerSeries<mint> g = {1},
                                      int m = -1) {
  using fps = FormalPowerSeries<mint>;
  int n = f.size() - 1, k = 1;
  g.resize(n + 1);
  if (m == -1) m = n;
  int h = 1;
  while (h < n + 1) h *= 2;
  fps P(h * k), Q(h * k), nP(4 * h * k), nQ(4 * h * k), nR(2 * h * k);
  for (int i = 0; i <= n; i++) P[i] = g[i], Q[i] = -f[i];
  while (n) {
    nP.assign(4 * h * k, 0);
    nQ.assign(4 * h * k, 0);
    for (int i = 0; i < k; i++) {
      copy(begin(P) + i * h, begin(P) + i * h + n + 1, begin(nP) + i * 2 * h);
      copy(begin(Q) + i * h, begin(Q) + i * h + n + 1, begin(nQ) + i * 2 * h);
    }
    nQ[k * 2 * h] += 1;
    nP.ntt(), nQ.ntt();
    for (int i = 0; i < 4 * h * k; i += 2) swap(nQ[i], nQ[i + 1]);
    for (int i = 0; i < 4 * h * k; i++) nP[i] *= nQ[i];
    for (int i = 0; i < 2 * h * k; i++) nR[i] = nQ[i * 2] * nQ[i * 2 + 1];
    nP.intt(), nR.intt();
    nR[0] -= 1;
    P.assign(h * k, 0), Q.assign(h * k, 0);
    for (int i = 0; i < 2 * k; i++) {
      for (int j = 0; j <= n / 2; j++) {
        P[i * h / 2 + j] = nP[i * 2 * h + j * 2 + n % 2];
        Q[i * h / 2 + j] = nR[i * h + j];
      }
    }
    n /= 2, h /= 2, k *= 2;
  }
  fps S{begin(P), begin(P) + k}, T{begin(Q), begin(Q) + k};
  T.push_back(1);
  return (S.rev() * T.rev().inv(m + 1)).pre(m + 1);
}
*/

/**
 * @brief pow 列挙
 */
// End include: "../../fps/pow-enumerate.hpp"
// Begin include: "../../fps/ntt-friendly-fps.hpp"

// Begin include: "../ntt/ntt.hpp"

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = mint(1), zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
// End include: "../ntt/ntt.hpp"
// Begin include: "./formal-power-series.hpp"

// End include: "./formal-power-series.hpp"

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  set_fft();
  auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  set_fft();
  return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> res(deg);
  res[0] = {mint(1) / (*this)[0]};
  for (int d = 1; d < deg; d <<= 1) {
    FormalPowerSeries<mint> f(2 * d), g(2 * d);
    for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
    for (int j = 0; j < d; j++) g[j] = res[j];
    f.ntt();
    g.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = 0; j < d; j++) f[j] = mint(0);
    f.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
  }
  return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  using fps = FormalPowerSeries<mint>;
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = this->size();

  fps inv;
  inv.reserve(deg + 1);
  inv.push_back(mint(0));
  inv.push_back(mint(1));

  auto inplace_integral = [&](fps& F) -> void {
    const int n = (int)F.size();
    auto mod = mint::get_mod();
    while ((int)inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), mint(0));
    for (int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](fps& F) -> void {
    if (F.empty()) return;
    F.erase(begin(F));
    mint coeff = mint(1), one = mint(1);
    for (int i = 0; i < (int)F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for (int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    y.ntt();
    z1 = z2;
    fps z(m);
    for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    z.intt();
    fill(begin(z), begin(z) + m / 2, mint(0));
    z.ntt();
    for (int i = 0; i < m; ++i) z[i] *= -z1[i];
    z.intt();
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    z2.ntt();
    fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
    x.resize(m);
    inplace_diff(x);
    x.push_back(mint(0));
    x.ntt();
    for (int i = 0; i < m; ++i) x[i] *= y[i];
    x.intt();
    x -= b.diff();
    x.resize(2 * m);
    for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    x.intt();
    x.pop_back();
    inplace_integral(x);
    for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, mint(0));
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    x.intt();
    b.insert(end(b), begin(x) + m, end(x));
  }
  return fps{begin(b), begin(b) + deg};
}

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */
// End include: "../../fps/ntt-friendly-fps.hpp"
// Begin include: "../../modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
// End include: "../../modint/montgomery-modint.hpp"

using mint = LazyMontgomeryModInt<998244353>;
using FPS = FormalPowerSeries<mint>;
int main(){
	int n,k;
	cin>>n>>k;
	vector<mint> fact(n+1,1),factinv(n+1);
	for(int i=1;i<=n;i++)fact[i]=fact[i-1]*i;
	factinv[n]=fact[n].inverse();
	for(int i=n-1;i>=0;i--)factinv[i]=factinv[i+1]*(i+1);
	FPS T(n+1);
	T[1]=1;
	for(int i=2;i<=n;i++)T[i]=((mint)i).pow(i-2)*factinv[i]*i;
	T=T.exp();
	FPS S(n+1);
	for(int i=0;i<n;i++)S[i+1]=T[i];
	FPS v(n+1);
	FPS e(1,1);
	auto U=pow_enumerate(S,e,n);
	for(int i=1;i<=n;i++)v[i]=U[i]*fact[n-i]*((mint)i-1).pow(k);
	FPS u(n+1);
	for(int i=0;i<=n;i++)u[i]=factinv[i];
	FPS w=v*u;	
	mint sum=0;
	for(int a=1;a<=n;a++){
		mint ans=w[a]*fact[a]/2;
		ans-=sum;
		cout<<ans<<endl;
		sum+=ans;
	}

}

0