結果
| 問題 | No.3442 Good Vertex Connectivity |
| コンテスト | |
| ユーザー |
kemuniku
|
| 提出日時 | 2026-02-06 23:45:41 |
| 言語 | Nim (2.2.6) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 40,693 bytes |
| 記録 | |
| コンパイル時間 | 6,882 ms |
| コンパイル使用メモリ | 87,840 KB |
| 実行使用メモリ | 53,628 KB |
| 最終ジャッジ日時 | 2026-02-06 23:47:24 |
| 合計ジャッジ時間 | 94,550 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 8 WA * 61 |
ソースコード
# source: src/cplib/utils/constants.nim
when not declared CPLIB_UTILS_CONSTANTS:
const CPLIB_UTILS_CONSTANTS* = 1
const INF32*: int32 = 1001000027.int32
const INF64*: int = int(3300300300300300491)
# source: src/cplib/tmpl/sheep.nim
when not declared CPLIB_TMPL_SHEEP:
const CPLIB_TMPL_SHEEP* = 1
{.warning[UnusedImport]: off.}
{.hint[XDeclaredButNotUsed]: off.}
import algorithm
import sequtils
import tables
import macros
import math
import sets
import strutils
import strformat
import sugar
import heapqueue
import streams
import deques
import bitops
import std/lenientops
import options
#入力系
proc scanf(formatstr: cstring){.header: "<stdio.h>", varargs.}
proc getchar(): char {.importc: "getchar_unlocked", header: "<stdio.h>", discardable.}
proc ii(): int {.inline.} = scanf("%lld\n", addr result)
proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())
proc si(): string {.inline.} =
result = ""
var c: char
while true:
c = getchar()
if c == ' ' or c == '\n' or c == '\255':
break
result &= c
#chmin,chmax
template `max=`(x, y) = x = max(x, y)
template `min=`(x, y) = x = min(x, y)
proc chmin[T](x: var T, y: T):bool=
if x > y:
x = y
return true
return false
proc chmax[T](x: var T, y: T):bool=
if x < y:
x = y
return true
return false
#bit演算
proc `%`*(x: int, y: int): int =
result = x mod y
if y > 0 and result < 0: result += y
if y < 0 and result > 0: result += y
proc `//`*(x: int, y: int): int{.inline.} =
result = x div y
if y > 0 and result * y > x: result -= 1
if y < 0 and result * y < x: result -= 1
proc `%=`(x: var int, y: int): void = x = x%y
proc `//=`(x: var int, y: int): void = x = x//y
proc `**`(x: int, y: int): int = x^y
proc `**=`(x: var int, y: int): void = x = x^y
proc `^`(x: int, y: int): int = x xor y
proc `|`(x: int, y: int): int = x or y
proc `&`(x: int, y: int): int = x and y
proc `>>`(x: int, y: int): int = x shr y
proc `<<`(x: int, y: int): int = x shl y
proc `~`(x: int): int = not x
proc `^=`(x: var int, y: int): void = x = x ^ y
proc `&=`(x: var int, y: int): void = x = x & y
proc `|=`(x: var int, y: int): void = x = x | y
proc `>>=`(x: var int, y: int): void = x = x >> y
proc `<<=`(x: var int, y: int): void = x = x << y
proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0
#便利な変換
proc `!`(x: char, a = '0'): int = int(x)-int(a)
#定数
const INF = INF64
#converter
#range
iterator range(start: int, ends: int, step: int): int =
var i = start
if step < 0:
while i > ends:
yield i
i += step
elif step > 0:
while i < ends:
yield i
i += step
iterator range(ends: int): int = (for i in 0..<ends: yield i)
iterator range(start: int, ends: int): int = (for i in
start..<ends: yield i)
#joinが非stringでめちゃくちゃ遅いやつのパッチ
proc join*[T: not string](a: openArray[T], sep: string = ""): string = a.mapit($it).join(sep)
proc dump[T](arr:seq[seq[T]])=
for i in 0..<len(arr):
echo arr[i]
proc sum(slice:HSlice[int,int]):int=
return (slice.a+slice.b)*len(slice)//2
proc `<`[T](l,r:seq[T]):bool=
for i in 0..<min(len(l),len(r)):
if l[i] > r[i]:
return false
elif l[i] < r[i]:
return true
return len(l) < len(r)
# source: src/cplib/graph/graph.nim
when not declared CPLIB_GRAPH_GRAPH:
const CPLIB_GRAPH_GRAPH* = 1
import sequtils
import math
type DynamicGraph*[T] = ref object of RootObj
edges*: seq[seq[(int32, T)]]
len*: int
type StaticGraph*[T] = ref object of RootObj
src*, dst*: seq[int32]
cost*: seq[T]
elist*: seq[(int32, T)]
start*: seq[int32]
len*: int
type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]
type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]
type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]
type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]
type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]
type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]
type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]
type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]
type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]
type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph
type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph
type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]
type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph
type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph
type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph
proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =
g.edges[u].add((v.int32, cost))
if not directed: g.edges[v].add((u.int32, cost))
proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =
result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)
proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =
g.add_edge_dynamic_impl(u, v, cost, true)
proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =
result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)
proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =
g.add_edge_dynamic_impl(u, v, cost, false)
proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =
result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)
proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =
g.add_edge_dynamic_impl(u, v, 1, true)
proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =
result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)
proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =
g.add_edge_dynamic_impl(u, v, 1, false)
proc len*[T](G: WeightedGraph[T]): int = G.len
proc len*(G: UnWeightedGraph): int = G.len
iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =
for e in g.edges[x]: yield (e[0].int, e[1])
iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =
for e in g.edges[x]: yield e[0].int
proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =
g.src.add(u.int32)
g.dst.add(v.int32)
g.cost.add(cost)
if not directed:
g.src.add(v.int32)
g.dst.add(u.int32)
g.cost.add(cost)
proc build_impl*[T](g: StaticGraph[T]) =
g.start = newSeqWith(g.len + 1, 0.int32)
for i in 0..<g.src.len:
g.start[g.src[i]] += 1
g.start.cumsum
g.elist = newSeq[(int32, T)](g.start[^1])
for i in countdown(g.src.len - 1, 0):
var u = g.src[i]
var v = g.dst[i]
g.start[u] -= 1
g.elist[g.start[u]] = (v, g.cost[i])
proc build*(g: StaticGraphTypes) = g.build_impl()
proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =
result = WeightedDirectedStaticGraph[edgetype](
src: newSeqOfCap[int32](capacity),
dst: newSeqOfCap[int32](capacity),
cost: newSeqOfCap[edgetype](capacity),
elist: newSeq[(int32, edgetype)](0),
start: newSeq[int32](0),
len: N
)
proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =
g.add_edge_static_impl(u, v, cost, true)
proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =
result = WeightedUnDirectedStaticGraph[edgetype](
src: newSeqOfCap[int32](capacity*2),
dst: newSeqOfCap[int32](capacity*2),
cost: newSeqOfCap[edgetype](capacity*2),
elist: newSeq[(int32, edgetype)](0),
start: newSeq[int32](0),
len: N
)
proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =
g.add_edge_static_impl(u, v, cost, false)
proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =
result = UnWeightedDirectedStaticGraph(
src: newSeqOfCap[int32](capacity),
dst: newSeqOfCap[int32](capacity),
cost: newSeqOfCap[int](capacity),
elist: newSeq[(int32, int)](0),
start: newSeq[int32](0),
len: N
)
proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =
g.add_edge_static_impl(u, v, 1, true)
proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =
result = UnWeightedUnDirectedStaticGraph(
src: newSeqOfCap[int32](capacity*2),
dst: newSeqOfCap[int32](capacity*2),
cost: newSeqOfCap[int](capacity*2),
elist: newSeq[(int32, int)](0),
start: newSeq[int32](0),
len: N
)
proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =
g.add_edge_static_impl(u, v, 1, false)
proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, "Static Graph must be initialized before use."
iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =
g.static_graph_initialized_check()
for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])
iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =
g.static_graph_initialized_check()
for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int
iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =
for e in g.edges[x]: yield (e[0].int, e[1])
iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =
g.static_graph_initialized_check()
for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])
import tables
type UnWeightedUnDirectedTableGraph*[T] = object
toi* : Table[T,int]
v* : seq[T]
graph* : UnWeightedUnDirectedGraph
type UnWeightedDirectedTableGraph*[T] = object
toi* : Table[T,int]
v* : seq[T]
graph* : UnWeightedDirectedGraph
type WeightedUnDirectedTableGraph*[T,S] = object
toi* : Table[T,int]
v* : seq[T]
graph* : WeightedUnDirectedGraph[S]
type WeightedDirectedTableGraph*[T,S] = object
toi* : Table[T,int]
v* : seq[T]
graph* : WeightedDirectedGraph[S]
type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]
type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]
proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=
for i in 0..<len(V):
result.toi[V[i]] = i
result.graph = initUnWeightedUnDirectedGraph(len(V))
result.v = V
proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=
for i in 0..<len(V):
result.toi[V[i]] = i
result.graph = initUnWeightedDirectedGraph(len(V))
result.v = V
proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=
for i in 0..<len(V):
result.toi[V[i]] = i
result.graph = initWeightedUnDirectedGraph(len(V),S)
result.v = V
proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=
for i in 0..<len(V):
result.toi[V[i]] = i
result.graph = initWeightedDirectedGraph(len(V),S)
result.v = V
proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=
g.graph.add_edge(g.toi[u],g.toi[v])
proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=
g.graph.add_edge(g.toi[u],g.toi[v],cost)
iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) =
for (x,y) in g.graph[g.toi[x]]:
yield (g.v[x],y)
iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T =
for x in g.graph[g.toi[x]]:
yield g.v[x]
# source: src/cplib/tree/heavylightdecomposition.nim
when not declared CPLIB_TREE_HLD:
const CPLIB_TREE_HLD* = 1
import sequtils
import algorithm
import sets
# https://atcoder.jp/contests/abc337/submissions/50216964
# ↑上記の提出より引用
type HeavyLightDecomposition* = ref object
N*: int
P*, PP*, PD*, D*, I*, rangeL*, rangeR*: seq[int]
proc initHld*(g: UnDirectedGraph, root: int): HeavyLightDecomposition =
var hld = HeavyLightDecomposition()
var n: int = g.len
hld.N = n
hld.P = newSeqWith(n, -1)
hld.I = newSeqWith(n, 0)
hld.I[0] = root
var iI = 1
for i in 0..<n:
var p = hld.I[i]
for e in g[p]:
if hld.P[p] != e:
hld.I[iI] = e
hld.P[e] = p
iI += 1
var Z = newSeqWith(n, 1)
var nx = newSeqWith(n, -1)
hld.PP = newSeqWith(n, 0)
for i in 0..<n:
hld.PP[i] = i
for i in 1..<n:
var p = hld.I[n-i]
Z[hld.P[p]] += Z[p]
if nx[hld.P[p]] == -1 or Z[nx[hld.P[p]]] < Z[p]:
nx[hld.P[p]] = p
for p in hld.I:
if nx[p] != -1:
hld.PP[nx[p]] = p
hld.PD = newSeqWith(n, n)
hld.PD[root] = 0
hld.D = newSeqWith(n, 0)
for p in hld.I:
if p != root:
hld.PP[p] = hld.PP[hld.PP[p]]
hld.PD[p] = min(hld.PD[hld.PP[p]], hld.PD[hld.P[p]]+1)
hld.D[p] = hld.D[hld.P[p]]+1
hld.rangeL = newSeqWith(n, 0)
hld.rangeR = newSeqWith(n, 0)
for p in hld.I:
hld.rangeR[p] = hld.rangeL[p] + Z[p]
var ir = hld.rangeR[p]
for e in g[p]:
if hld.P[p] != e and e != nx[p]:
ir -= Z[e]
hld.rangeL[e] = ir
if nx[p] != -1:
hld.rangeL[nx[p]] = hld.rangeL[p] + 1
for i in 0..<n:
hld.I[hld.rangeL[i]] = i
return hld
proc initHld*(g: DirectedGraph, root: int): HeavyLightDecomposition =
var n = g.len
var gn = initUnWeightedUnDirectedStaticGraph(n)
var seen = initHashSet[(int, int)]()
for i in 0..<n:
for (j, _) in g[i]:
if (i, j) notin seen:
gn.add_edge(i, j)
seen.incl((i, j))
seen.incl((j, i))
gn.build
return initHld(gn, root)
proc initHld*(adj: seq[seq[int]], root: int): HeavyLightDecomposition =
var n = adj.len
var gn = initUnWeightedUnDirectedStaticGraph(n)
var seen = initHashSet[(int, int)]()
for i in 0..<n:
for j in adj[i]:
if (i, j) notin seen:
gn.add_edge(i, j)
seen.incl((i, j))
seen.incl((j, i))
gn.build
return initHld(gn, root)
proc numVertices*(hld: HeavyLightDecomposition): int = hld.N
proc depth*(hld: HeavyLightDecomposition, p: int): int = hld.D[p]
proc toSeq*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx]
proc toVtx*(hld: HeavyLightDecomposition, seqidx: int): int = hld.I[seqidx]
proc toSeq2In*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx] * 2 - hld.D[vtx]
proc toSeq2Out*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeR[vtx] * 2 - hld.D[vtx] - 1
proc parentOf*(hld: HeavyLightDecomposition, v: int): int = hld.P[v]
proc heavyRootOf*(hld: HeavyLightDecomposition, v: int): int = hld.PP[v]
proc heavyChildOf*(hld: HeavyLightDecomposition, v: int): int =
if hld.toSeq(v) == hld.N-1:
return -1
var cand = hld.toVtx(hld.toSeq(v) + 1)
if hld.PP[v] == hld.PP[cand]:
return cand
-1
proc lca*(hld: HeavyLightDecomposition, u: int, v: int): int =
var (u, v) = (u, v)
if hld.PD[u] < hld.PD[v]:
swap(u, v)
while hld.PD[u] > hld.PD[v]:
u = hld.P[hld.PP[u]]
while hld.PP[u] != hld.PP[v]:
u = hld.P[hld.PP[u]]
v = hld.P[hld.PP[v]]
if hld.D[u] > hld.D[v]:
return v
u
proc dist*(hld: HeavyLightDecomposition, u: int, v: int): int =
hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2
proc path*(hld: HeavyLightDecomposition, r: int, c: int, include_root: bool, reverse_path: bool): seq[(int, int)] =
var (r, c) = (r, c)
var k = hld.PD[c] - hld.PD[r] + 1
if k <= 0:
return @[]
var res = newSeqWith(k, (0, 0))
for i in 0..<k-1:
res[i] = (hld.rangeL[hld.PP[c]], hld.rangeL[c] + 1)
c = hld.P[hld.PP[c]]
if hld.PP[r] != hld.PP[c] or hld.D[r] > hld.D[c]:
return @[]
var root_off = int(not include_root)
res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)
if res[^1][0] == res[^1][1]:
discard res.pop()
k -= 1
if reverse_path:
for i in 0..<k:
res[i] = (hld.N - res[i][1], hld.N - res[i][0])
else:
res.reverse()
res
proc subtree*(hld: HeavyLightDecomposition, p: int): (int, int) = (hld.rangeL[p], hld.rangeR[p])
iterator subtreeV*(hld: HeavyLightDecomposition, p: int):int=
for i in hld.rangeL[p]..<hld.rangeR[p]:
yield hld.toVtx(i)
proc median*(hld: HeavyLightDecomposition, x: int, y: int, z: int): int =
hld.lca(x, y) xor hld.lca(y, z) xor hld.lca(x, z)
proc la*(hld: HeavyLightDecomposition, starting: int, goal: int, d: int): int =
var (u, v, d) = (starting, goal, d)
if d < 0:
return -1
var g = hld.lca(u, v)
var dist0 = hld.D[u] - hld.D[g] * 2 + hld.D[v]
if dist0 < d:
return -1
var p = u
if hld.D[u] - hld.D[g] < d:
p = v
d = dist0 - d
while hld.D[p] - hld.D[hld.PP[p]] < d:
d -= hld.D[p] - hld.D[hld.PP[p]] + 1
p = hld.P[hld.PP[p]]
hld.I[hld.rangeL[p] - d]
iterator children*(hld: HeavyLightDecomposition, v: int): int =
var s = hld.rangeL[v] + 1
while s < hld.rangeR[v]:
var w = hld.toVtx(s)
yield w
s += hld.rangeR[w] - hld.rangeL[w]
proc initAuxiliaryTree*(hld:HeavyLightDecomposition,v:seq[int]):UnWeightedUnDirectedTableGraph[int]=
var v = v.sortedByit(hld.toseq(it))
for i in 0..<(len(v)-1):
v.add(hld.lca(v[i],v[i+1]))
v = v.sortedByIt(hld.toseq(it)).deduplicate(true)
var stack :seq[int]
result = initUnWeightedUnDirectedTableGraph[int](v)
stack.add(v[0])
for i in 1..<len(v):
while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):
discard stack.pop()
if len(stack) != 0:
result.add_edge(stack[^1],v[i])
stack.add(v[i])
proc initAuxiliaryWeightedTree*(hld:HeavyLightDecomposition,v:seq[int]):WeightedUnDirectedTableGraph[int,int]=
var v = v.sortedByit(hld.toseq(it))
for i in 0..<(len(v)-1):
v.add(hld.lca(v[i],v[i+1]))
v = v.sortedByIt(hld.toseq(it)).deduplicate(true)
var stack :seq[int]
result = initWeightedUnDirectedTableGraph(v,int)
stack.add(v[0])
for i in 1..<len(v):
while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):
discard stack.pop()
if len(stack) != 0:
result.add_edge(stack[^1],v[i],hld.depth(v[i])-hld.depth(stack[^1]))
stack.add(v[i])
# source: src/atcoder/internal_bit.nim
when not declared ATCODER_INTERNAL_BITOP_HPP:
const ATCODER_INTERNAL_BITOP_HPP* = 1
import std/bitops
#ifdef _MSC_VER
#include <intrin.h>
#endif
# @param n `0 <= n`
# @return minimum non-negative `x` s.t. `n <= 2**x`
proc ceil_pow2*(n:SomeInteger):int =
var x = 0
while (1.uint shl x) < n.uint: x.inc
return x
# @param n `1 <= n`
# @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
proc bsf*(n:SomeInteger):int =
return countTrailingZeroBits(n)
# source: src/atcoder/rangeutils.nim
when not declared ATCODER_RANGEUTILS_HPP:
const ATCODER_RANGEUTILS_HPP* = 1
type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]
type IndexType* = int | BackwardsIndex
template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)
template `^^`*(s, i: untyped): untyped =
(when i is BackwardsIndex: s.len - int(i) else: int(i))
template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =
(s^^p.a, s^^p.b + 1)
# source: src/atcoder/lazysegtree.nim
when not declared ATCODER_LAZYSEGTREE_HPP:
const ATCODER_LAZYSEGTREE_HPP* = 1
import std/sequtils
import std/algorithm
{.push inline.}
type LazySegTree*[S,F;p:static[tuple]] = object
len*, size*, log*:int
d*:seq[S]
lz*:seq[F]
template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =
block:
let u = ST.p.op(a, b)
u
template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =
block:
let u = ST.p.e()
u
template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =
block:
let u = ST.p.mapping(a, b)
u
template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =
block:
# こう書かないとバグる事象を検出
let u = ST.p.composition(a, b)
u
template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =
block:
let u = ST.p.id()
u
proc update[ST:LazySegTree](self:var ST, k:int) =
self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])
proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =
self.d[k] = ST.calc_mapping(f, self.d[k])
if k < self.size:
self.lz[k] = ST.calc_composition(f, self.lz[k])
proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =
self.all_apply(1, f)
proc push*[ST:LazySegTree](self: var ST, k:int) =
self.all_apply(2 * k, self.lz[k])
self.all_apply(2 * k + 1, self.lz[k])
self.lz[k] = ST.calc_id()
proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =
let
n = v.len
log = ceil_pow2(n)
size = 1 shl log
(self.len, self.size, self.log) = (n, size, log)
if self.d.len < 2 * size:
self.d = newSeqWith(2 * size, ST.calc_e())
else:
self.d.fill(0, 2 * size - 1, ST.calc_e())
for i in 0..<n:
self.d[size + i] = v[i]
if self.lz.len < size:
self.lz = newSeqWith(size, ST.calc_id())
else:
self.lz.fill(0, size - 1, ST.calc_id())
for i in countdown(size - 1, 1): self.update(i)
proc init*[ST:LazySegTree](self: var ST, n:int) = self.init(newSeqWith(n, ST.calc_e()))
proc init*[ST:LazySegTree](self: typedesc[ST], v:seq[ST.S] or int):ST = result.init(v)
template LazySegTreeType[S, F](op0, e0, mapping0, composition0, id0:untyped):typedesc[LazySegTree] =
proc op1(a, b:S):S {.gensym inline.} = op0(a, b)
proc e1():S {.gensym inline.} = e0()
proc mapping1(f:F, s:S):S {.gensym inline.} = mapping0(f, s)
proc composition1(f1, f2:F):F {.gensym inline.} = composition0(f1, f2)
proc id1():F {.gensym inline.} = id0()
LazySegTree[S, F, (op:op1, e:e1, mapping:mapping1, composition:composition1, id:id1)]
template getType*(ST:typedesc[LazySegTree], S, F:typedesc, op, e, mapping, composition, id:untyped):typedesc[LazySegTree] =
LazySegTreeType[S, F](op, e, mapping, composition, id)
template initLazySegTree*[S, F](v:seq[S] or int, op, e, mapping, composition, id:untyped):auto =
LazySegTreeType[S, F](op, e, mapping, composition, id).init(v)
proc set*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) =
var p = self^^p
assert p in 0..<self.len
p += self.size
for i in countdown(self.log, 1): self.push(p shr i)
self.d[p] = x
for i in 1..self.log: self.update(p shr i)
proc get*[ST:LazySegTree](self: var ST, p:IndexType):ST.S =
var p = self^^p
assert p in 0..<self.len
p += self.size
for i in countdown(self.log, 1): self.push(p shr i)
return self.d[p]
proc `[]=`*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) = self.set(p, x)
proc `[]`*[ST:LazySegTree](self: var ST, p:IndexType):ST.S = self.get(p)
proc prod*[ST:LazySegTree](self:var ST, p:RangeType):ST.S =
var (l, r) = self.halfOpenEndpoints(p)
assert 0 <= l and l <= r and r <= self.len
if l == r: return ST.calc_e()
l += self.size
r += self.size
for i in countdown(self.log, 1):
if ((l shr i) shl i) != l: self.push(l shr i)
if ((r shr i) shl i) != r: self.push(r shr i)
var sml, smr = ST.calc_e()
while l < r:
if (l and 1) != 0: sml = ST.calc_op(sml, self.d[l]);l.inc
if (r and 1) != 0: r.dec;smr = ST.calc_op(self.d[r], smr)
l = l shr 1
r = r shr 1
return ST.calc_op(sml, smr)
proc `[]`*[ST:LazySegTree](self: var ST, p:RangeType):ST.S = self.prod(p)
proc all_prod*[ST:LazySegTree](self:ST):auto = self.d[1]
proc apply*[ST:LazySegTree](self: var ST, p:IndexType, f:ST.F) =
var p = self^^p
assert p in 0..<self.len
p += self.size
for i in countdown(self.log, 1): self.push(p shr i)
self.d[p] = ST.calc_mapping(f, self.d[p])
for i in 1..self.log: self.update(p shr i)
proc apply*[ST:LazySegTree](self: var ST, p:RangeType, f:ST.F) =
var (l, r) = self.halfOpenEndpoints(p)
assert 0 <= l and l <= r and r <= self.len
if l == r: return
l += self.size
r += self.size
for i in countdown(self.log, 1):
if ((l shr i) shl i) != l: self.push(l shr i)
if ((r shr i) shl i) != r: self.push((r - 1) shr i)
block:
var (l, r) = (l, r)
while l < r:
if (l and 1) != 0: self.all_apply(l, f);l.inc
if (r and 1) != 0: r.dec;self.all_apply(r, f)
l = l shr 1
r = r shr 1
for i in 1..self.log:
if ((l shr i) shl i) != l: self.update(l shr i)
if ((r shr i) shl i) != r: self.update((r - 1) shr i)
# template <bool (*g)(S)> int max_right(int l) {
# return max_right(l, [](S x) { return g(x); });
# }
proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =
var l = self^^l
assert l in 0..self.len
assert g(ST.calc_e())
if l == self.len: return self.len
l += self.size
for i in countdown(self.log, 1): self.push(l shr i)
var sm = ST.calc_e()
while true:
while l mod 2 == 0: l = l shr 1
if not g(ST.calc_op(sm, self.d[l])):
while l < self.size:
self.push(l)
l = (2 * l)
if g(ST.calc_op(sm, self.d[l])):
sm = ST.calc_op(sm, self.d[l])
l.inc
return l - self.size
sm = ST.calc_op(sm, self.d[l])
l.inc
if not((l and -l) != l): break
return self.len
# template <bool (*g)(S)> int min_left(int r) {
# return min_left(r, [](S x) { return g(x); });
# }
proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =
var r = self^^r
assert r in 0..self.len
assert(g(ST.calc_e()))
if r == 0: return 0
r += self.size
for i in countdown(self.log, 1): self.push((r - 1) shr i)
var sm = ST.calc_e()
while true:
r.dec
while r > 1 and r mod 2 == 1: r = r shr 1
if not g(ST.calc_op(self.d[r], sm)):
while r < self.size:
self.push(r)
r = (2 * r + 1)
if g(ST.calc_op(self.d[r], sm)):
sm = ST.calc_op(self.d[r], sm)
r.dec
return r + 1 - self.size
sm = ST.calc_op(self.d[r], sm)
if not ((r and -r) != r): break
return 0
{.pop.}
# source: src/cplib/utils/binary_search.nim
when not declared CPLIB_UTILS_BINARY_SEARCH:
const CPLIB_UTILS_BINARY_SEARCH* = 1
proc meguru_bisect*(ok, ng: int, is_ok: proc(x: int): bool): int =
var
ok = ok
ng = ng
while abs(ok - ng) > 1:
var mid = (ok + ng) div 2
if is_ok(mid): ok = mid
else: ng = mid
return ok
proc meguru_bisect*(ok, ng: SomeFloat, is_ok: proc(x: SomeFloat): bool, eps: SomeFloat = 1e-10): SomeFloat =
var
ok = ok
ng = ng
while abs(ok - ng) > eps and abs(ok - ng) / max(ok, ng) > eps:
var mid = (ok + ng) / 2
if is_ok(mid): ok = mid
else: ng = mid
return ok
# source: src/cplib/collections/segtree.nim
when not declared CPLIB_COLLECTIONS_SEGTREE:
const CPLIB_COLLECTIONS_SEGTREE* = 1
import algorithm
import strutils
import sequtils
type SegmentTree*[T] = ref object
default: T
merge: proc(x: T, y: T): T
arr*: seq[T]
lastnode: int
length: int
proc initSegmentTree*[T](v: seq[T], merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =
var lastnode = 1
while lastnode < len(v):
lastnode*=2
var arr = newSeq[T](2*lastnode)
arr.fill(default)
var self = SegmentTree[T](default: default, merge: merge, arr: arr, lastnode: lastnode, length: len(v))
#1-indexedで作成する
for i in 0..<len(v):
self.arr[self.lastnode+i] = v[i]
for i in countdown(lastnode-1, 1):
self.arr[i] = self.merge(self.arr[2*i], self.arr[2*i+1])
return self
proc initSegmentTree*[T](n: int, merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =
initSegmentTree(newSeqWith(n, default), merge, default)
proc update*[T](self: SegmentTree[T], x: Natural, val: T) =
assert x < self.length
var x = x
x += self.lastnode
self.arr[x] = val
while x > 1:
x = x shr 1
self.arr[x] = self.merge(self.arr[2*x], self.arr[2*x+1])
proc get*[T](self: SegmentTree[T], q_left: Natural, q_right: Natural): T =
assert q_left <= q_right and 0 <= q_left and q_right <= self.length
var q_left = q_left
var q_right = q_right
q_left += self.lastnode
q_right += self.lastnode
var (lres, rres) = (self.default, self.default)
while q_left < q_right:
if (q_left and 1) > 0:
lres = self.merge(lres, self.arr[q_left])
q_left += 1
if (q_right and 1) > 0:
q_right -= 1
rres = self.merge(self.arr[q_right], rres)
q_left = q_left shr 1
q_right = q_right shr 1
return self.merge(lres, rres)
proc get*[T](self: SegmentTree[T], segment: HSlice[int, int]): T =
assert segment.a <= segment.b + 1 and 0 <= segment.a and segment.b+1 <= self.length
return self.get(segment.a, segment.b+1)
proc `[]`*[T](self: SegmentTree[T], segment: HSlice[int, int]): T = self.get(segment)
proc `[]`*[T](self: SegmentTree[T], index: Natural): T =
assert index < self.length
return self.arr[index+self.lastnode]
proc `[]=`*[T](self: SegmentTree[T], index: Natural, val: T) =
assert index < self.length
self.update(index, val)
proc get_all*[T](self: SegmentTree[T]): T =
return self.arr[1]
proc len*[T](self: SegmentTree[T]): int =
return self.length
proc `$`*[T](self: SegmentTree[T]): string =
var s = self.arr.len div 2
return self.arr[s..<s+self.len].join(" ")
template newSegWith*(V, merge, default: untyped): untyped =
initSegmentTree[typeof(default)](V, proc (l{.inject.}, r{.inject.}: typeof(default)): typeof(default) = merge, default)
proc max_right*[T](self: SegmentTree[T], l: int, f: proc(l: T): bool): int =
assert 0 <= l and l <= self.len
assert f(self.default)
if l == self.len: return self.len
var l = l + self.lastnode
var sm = self.default
while true:
while l mod 2 == 0: l = (l shr 1)
if not f(self.merge(sm, self.arr[l])):
while l < self.lastnode:
l *= 2
if f(self.merge(sm, self.arr[l])):
sm = self.merge(sm, self.arr[l])
l += 1
return l - self.lastnode
sm = self.merge(sm, self.arr[l])
l += 1
if (l and -l) == l: break
return self.len
proc min_left*[T](self: SegmentTree[T], r: int, f: proc(l: T): bool): int =
assert 0 <= r and r <= self.len
assert f(self.default)
if r == 0: return 0
var r = r + self.lastnode
var sm = self.default
while true:
r -= 1
while ((r > 1) and (r mod 2 != 0)): r = (r shr 1)
if not f(self.merge(self.arr[r], sm)):
while r < self.lastnode:
r = 2 * r + 1
if f(self.merge(self.arr[r], sm)):
sm = self.merge(self.arr[r], sm)
r -= 1
return r + 1 - self.lastnode
sm = self.merge(self.arr[r], sm)
if (r and -r) == r: break
return 0
proc initRangeAddRangeMinSegtree[T](v:seq[T]):auto=
type S = (T,int)
type F = T
proc op(a,b:S):S=
if a[0] == b[0]:
return (a[0],a[1]+b[1])
elif a[0] < b[0]:
return a
else:
return b
proc e():S=(INF,1)
proc mapping(f:F,x:S):S=(x[0]+f,x[1])
proc composition(f,g:F):F=f+g
proc id():F=0
return LazySegTree.getType(S, F, op, e, mapping, composition, id).init(v.mapit((it,1)))
var N = ii()
var G = initUnWeightedUnDirectedGraph(N)
# クエリ1 : 色反転
# クエリ2 : yを根としたときに、xが含まれないような部分木に含まれる黒色の頂点の数を出力
# クエリ2はyを根としたときにxが含まれるような部分木に含まれる黒色の頂点の数と解釈可能
# x = y : すべての黒色頂点
# yが黒 : それも含む
# 部分木クエリといえばオイラーツアーだが...
# range add range 最小値カウント
# -> 遅延セグ木に乗る
# hldするなどの行為により部分木クエリは可能になった。
# xがyの子孫にあるとき : yについて部分木クエリ - yからx方向に1進んだ頂点から部分木クエリ + 親方向
# 親方向ってどうやってやるんだ???????
# 親方向ではじめて別の部分木に頂点があるところを見つけて、そこの部分木クエリから - yからx方向に1進んだ頂点から部分木クエリ
# yがxの子孫にあるとき : yについて部分木クエリ
for _ in range(N-1):
var a,b = ii()-1
G.add_edge(a,b)
var tmp = lii(N)
var C = newsegwith(N,l+r,0)
var T = G.initHld(0)
for i in range(N):
C[T.toseq(i)] = tmp[i]
var st = initRangeAddRangeMinSegtree(newseqwith(N,0))
for i in range(N):
if C[T.toseq(i)] == 1:
for (l,r) in T.path(0,i,true,false):
st.apply(l..<r,1)
var Q = ii()
for _ in range(Q):
var t = ii()
if t == 1:
var v = ii()-1
if C[T.toseq(v)] == 1:
for (l,r) in T.path(0,v,true,false):
st.apply(l..<r,-1)
else:
for (l,r) in T.path(0,v,true,false):
st.apply(l..<r,1)
C[T.toseq(v)] = C[T.toseq(v)] ^ 1
else:
#echo C
#echo (0..<N).toseq().mapit(T.toseq(it)).mapit(C[it])
var x,y = ii()-1
var (l,r) = T.subtree(y)
proc get_subtree_query(x:int):int=
# 部分木内の黒色の頂点を全て含むために必要な頂点数
var (l,r) = T.subtree(x)
var res = st[l..<r]
#544echo res
if res[0] != 0:
return r-l
return r-l-res[1]
proc all_black_lca(ROOT:int=0):int=
# すべての黒色の頂点のlca
# 適当な黒色の頂点を取ってあげる。
proc f(x:int):bool=
return x <= 0
var x = T.toVtx(C.max_right(T.toseq(ROOT),f))
#echo "?",x
if x == ROOT:
return ROOT
# その頂点から上方向に二分探索
#echo "!",x
#echo C
var tmp = T.la(0,x,1)
if st[T.toseq(ROOT)][0] != st[T.toseq(tmp)][0]:
return 0
var dist = T.dist(ROOT,x)
proc is_ok(arg:int):bool=
var x = T.la(ROOT,x,arg)
return st[T.toseq(ROOT)][0] == st[T.toseq(x)][0]
var res = meguru_bisect(0,dist+1,is_ok)
#echo "res:",res
var root = T.la(ROOT,x,res)
#echo "root:",root
return root
if C.get_all() == 0:
echo 0
continue
if x == y:
# 黒色全て
# 黒色頂点たちすべてのlcaが求めたい。
if C.get_all() == 0:
echo 0
else:
var lca = all_black_lca()
#echo "lca:",lca
echo get_subtree_query(lca)
elif y == 0:
var lca = all_black_lca()
if lca == 0:
var z = T.la(y,x,1)
echo get_subtree_query(0) - get_subtree_query(z)
else:
echo get_subtree_query(lca)
elif T.toseq(x) notin l..<r:
# xがyの子孫でないパターン
if st[T.toseq(y)][0] == 0:
echo 0
else:
var tmp = all_black_lca(y)
#echo "!",tmp
echo get_subtree_query(tmp)
else:
# xがyの子孫であるパターン
if st[T.toseq(y)][0] == 0:
var lca = all_black_lca()
echo get_subtree_query(lca)
else:
var z = T.la(y,x,1)
#echo "!",st[T.toseq(y)][0] ," ", st[T.toseq(z)][0]," ",get_subtree_query(z)," ",z
if st[T.toseq(y)][0] != st[T.toseq(z)][0]:
var lca = all_black_lca()
echo get_subtree_query(lca) - get_subtree_query(z)
else:
var dist = T.dist(0,y)
proc is_ok(arg:int):bool=
var x = T.la(y,0,arg)
return st[T.toseq(0)][0] == st[T.toseq(y)][0]
var res = meguru_bisect(0,dist,is_ok)
var root = T.la(0,y,res)
var lca = all_black_lca()
echo get_subtree_query(lca)-get_subtree_query(root)
kemuniku