結果

問題 No.3442 Good Vertex Connectivity
コンテスト
ユーザー kemuniku
提出日時 2026-02-07 00:22:59
言語 Nim
(2.2.6)
結果
WA  
実行時間 -
コード長 42,737 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 6,419 ms
コンパイル使用メモリ 87,032 KB
実行使用メモリ 53,104 KB
最終ジャッジ日時 2026-02-07 00:24:35
合計ジャッジ時間 89,948 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 11 WA * 58
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: src/cplib/tmpl/sheep.nim
ImportExpand "cplib/tmpl/sheep" <=== "when not declared CPLIB_TMPL_SHEEP:\n    const CPLIB_TMPL_SHEEP* = 1\n    {.warning[UnusedImport]: off.}\n    {.hint[XDeclaredButNotUsed]: off.}\n    import algorithm\n    import sequtils\n    import tables\n    import macros\n    import math\n    import sets\n    import strutils\n    import strformat\n    import sugar\n    import heapqueue\n    import streams\n    import deques\n    import bitops\n    import std/lenientops\n    import options\n    #入力系\n    proc scanf(formatstr: cstring){.header: \"<stdio.h>\", varargs.}\n    proc getchar(): char {.importc: \"getchar_unlocked\", header: \"<stdio.h>\", discardable.}\n    proc ii(): int {.inline.} = scanf(\"%lld\\n\", addr result)\n    proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())\n    proc si(): string {.inline.} =\n        result = \"\"\n        var c: char\n        while true:\n            c = getchar()\n            if c == ' ' or c == '\\n' or c == '\\255':\n                break\n            result &= c\n    #chmin,chmax\n    template `max=`(x, y) = x = max(x, y)\n    template `min=`(x, y) = x = min(x, y)\n    proc chmin[T](x: var T, y: T):bool=\n        if x > y:\n            x = y\n            return true\n        return false\n    proc chmax[T](x: var T, y: T):bool=\n        if x < y:\n            x = y\n            return true\n        return false\n    #bit演算\n    proc `%`*(x: int, y: int): int =\n        result = x mod y\n        if y > 0 and result < 0: result += y\n        if y < 0 and result > 0: result += y\n    proc `//`*(x: int, y: int): int{.inline.} =\n        result = x div y\n        if y > 0 and result * y > x: result -= 1\n        if y < 0 and result * y < x: result -= 1\n    proc `%=`(x: var int, y: int): void = x = x%y\n    proc `//=`(x: var int, y: int): void = x = x//y\n    proc `**`(x: int, y: int): int = x^y\n    proc `**=`(x: var int, y: int): void = x = x^y\n    proc `^`(x: int, y: int): int = x xor y\n    proc `|`(x: int, y: int): int = x or y\n    proc `&`(x: int, y: int): int = x and y\n    proc `>>`(x: int, y: int): int = x shr y\n    proc `<<`(x: int, y: int): int = x shl y\n    proc `~`(x: int): int = not x\n    proc `^=`(x: var int, y: int): void = x = x ^ y\n    proc `&=`(x: var int, y: int): void = x = x & y\n    proc `|=`(x: var int, y: int): void = x = x | y\n    proc `>>=`(x: var int, y: int): void = x = x >> y\n    proc `<<=`(x: var int, y: int): void = x = x << y\n    proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0\n    #便利な変換\n    proc `!`(x: char, a = '0'): int = int(x)-int(a)\n    #定数\n    when not declared CPLIB_UTILS_CONSTANTS:\n        const CPLIB_UTILS_CONSTANTS* = 1\n        const INF32*: int32 = 1001000027.int32\n        const INF64*: int = int(3300300300300300491)\n    \n    const INF = INF64\n    #converter\n\n    #range\n    iterator range(start: int, ends: int, step: int): int =\n        var i = start\n        if step < 0:\n            while i > ends:\n                yield i\n                i += step\n        elif step > 0:\n            while i < ends:\n                yield i\n                i += step\n    iterator range(ends: int): int = (for i in 0..<ends: yield i)\n    iterator range(start: int, ends: int): int = (for i in\n            start..<ends: yield i)\n\n    #joinが非stringでめちゃくちゃ遅いやつのパッチ\n    proc join*[T: not string](a: openArray[T], sep: string = \"\"): string = a.mapit($it).join(sep)\n\n    proc dump[T](arr:seq[seq[T]])=\n        for i in 0..<len(arr):\n            echo arr[i]\n\n    proc sum(slice:HSlice[int,int]):int=\n        return (slice.a+slice.b)*len(slice)//2\n    \n    proc `<`[T](l,r:seq[T]):bool=\n        for i in 0..<min(len(l),len(r)):\n            if l[i] > r[i]:\n                return false\n            elif l[i] < r[i]:\n                return true\n        return len(l) < len(r)"
# source: src/cplib/graph/graph.nim
ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n    const CPLIB_GRAPH_GRAPH* = 1\n\n    import sequtils\n    import math\n    type DynamicGraph*[T] = ref object of RootObj\n        edges*: seq[seq[(int32, T)]]\n        len*: int\n    type StaticGraph*[T] = ref object of RootObj\n        src*, dst*: seq[int32]\n        cost*: seq[T]\n        elist*: seq[(int32, T)]\n        start*: seq[int32]\n        len*: int\n\n    type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n    type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n    type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n    type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n    type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n    type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n    type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n    type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n    type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n    proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n        g.edges[u].add((v.int32, cost))\n        if not directed: g.edges[v].add((u.int32, cost))\n\n    proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n        result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n        result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n        result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n        result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, false)\n\n    proc len*[T](G: WeightedGraph[T]): int = G.len\n    proc len*(G: UnWeightedGraph): int = G.len\n\n    iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n        for e in g.edges[x]: yield e[0].int\n\n    proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n        g.src.add(u.int32)\n        g.dst.add(v.int32)\n        g.cost.add(cost)\n        if not directed:\n            g.src.add(v.int32)\n            g.dst.add(u.int32)\n            g.cost.add(cost)\n\n    proc build_impl*[T](g: StaticGraph[T]) =\n        g.start = newSeqWith(g.len + 1, 0.int32)\n        for i in 0..<g.src.len:\n            g.start[g.src[i]] += 1\n        g.start.cumsum\n        g.elist = newSeq[(int32, T)](g.start[^1])\n        for i in countdown(g.src.len - 1, 0):\n            var u = g.src[i]\n            var v = g.dst[i]\n            g.start[u] -= 1\n            g.elist[g.start[u]] = (v, g.cost[i])\n    proc build*(g: StaticGraphTypes) = g.build_impl()\n\n    proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n        result = WeightedDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[edgetype](capacity),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n        result = WeightedUnDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[edgetype](capacity*2),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n        result = UnWeightedDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[int](capacity),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n        result = UnWeightedUnDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[int](capacity*2),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, false)\n\n    proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n    iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n\n    iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    \n    import tables\n\n    type UnWeightedUnDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedUnDirectedGraph\n\n    type UnWeightedDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedDirectedGraph\n\n    type WeightedUnDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedUnDirectedGraph[S]\n\n    type WeightedDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedDirectedGraph[S]\n\n    type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]\n    type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]\n\n    proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedUnDirectedGraph(len(V))\n        result.v = V\n\n    proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedDirectedGraph(len(V))\n        result.v = V\n\n    proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedUnDirectedGraph(len(V),S)\n        result.v = V\n\n    proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedDirectedGraph(len(V),S)\n        result.v = V\n\n    proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=\n        g.graph.add_edge(g.toi[u],g.toi[v])\n\n    proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=\n        g.graph.add_edge(g.toi[u],g.toi[v],cost)\n\n    iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) = \n        for (x,y) in g.graph[g.toi[x]]:\n            yield (g.v[x],y)\n    iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T = \n        for x in g.graph[g.toi[x]]:\n            yield g.v[x]\n\n"
# source: src/cplib/tree/heavylightdecomposition.nim
ImportExpand "cplib/tree/heavylightdecomposition" <=== "when not declared CPLIB_TREE_HLD:\n    const CPLIB_TREE_HLD* = 1\n    import sequtils\n    import algorithm\n    import sets\n    # https://atcoder.jp/contests/abc337/submissions/50216964\n    # ↑上記の提出より引用\n    type HeavyLightDecomposition* = ref object \n        N*: int\n        P*, PP*, PD*, D*, I*, rangeL*, rangeR*: seq[int]\n    proc initHld*(g: UnDirectedGraph, root: int): HeavyLightDecomposition =\n        var hld = HeavyLightDecomposition()\n        var n: int = g.len\n        hld.N = n\n        hld.P = newSeqWith(n, -1)\n        hld.I = newSeqWith(n, 0)\n        hld.I[0] = root\n        var iI = 1\n        for i in 0..<n:\n            var p = hld.I[i]\n            for e in g[p]:\n                if hld.P[p] != e:\n                    hld.I[iI] = e\n                    hld.P[e] = p\n                    iI += 1\n        var Z = newSeqWith(n, 1)\n        var nx = newSeqWith(n, -1)\n        hld.PP = newSeqWith(n, 0)\n        for i in 0..<n:\n            hld.PP[i] = i\n        for i in 1..<n:\n            var p = hld.I[n-i]\n            Z[hld.P[p]] += Z[p]\n            if nx[hld.P[p]] == -1 or Z[nx[hld.P[p]]] < Z[p]:\n                nx[hld.P[p]] = p\n        for p in hld.I:\n            if nx[p] != -1:\n                hld.PP[nx[p]] = p\n        hld.PD = newSeqWith(n, n)\n        hld.PD[root] = 0\n        hld.D = newSeqWith(n, 0)\n        for p in hld.I:\n            if p != root:\n                hld.PP[p] = hld.PP[hld.PP[p]]\n                hld.PD[p] = min(hld.PD[hld.PP[p]], hld.PD[hld.P[p]]+1)\n                hld.D[p] = hld.D[hld.P[p]]+1\n        hld.rangeL = newSeqWith(n, 0)\n        hld.rangeR = newSeqWith(n, 0)\n        for p in hld.I:\n            hld.rangeR[p] = hld.rangeL[p] + Z[p]\n            var ir = hld.rangeR[p]\n            for e in g[p]:\n                if hld.P[p] != e and e != nx[p]:\n                    ir -= Z[e]\n                    hld.rangeL[e] = ir\n            if nx[p] != -1:\n                hld.rangeL[nx[p]] = hld.rangeL[p] + 1\n        for i in 0..<n:\n            hld.I[hld.rangeL[i]] = i\n        return hld\n    proc initHld*(g: DirectedGraph, root: int): HeavyLightDecomposition =\n        var n = g.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for (j, _) in g[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc initHld*(adj: seq[seq[int]], root: int): HeavyLightDecomposition =\n        var n = adj.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for j in adj[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc numVertices*(hld: HeavyLightDecomposition): int = hld.N\n    proc depth*(hld: HeavyLightDecomposition, p: int): int = hld.D[p]\n    proc toSeq*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx]\n    proc toVtx*(hld: HeavyLightDecomposition, seqidx: int): int = hld.I[seqidx]\n    proc toSeq2In*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx] * 2 - hld.D[vtx]\n    proc toSeq2Out*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeR[vtx] * 2 - hld.D[vtx] - 1\n    proc parentOf*(hld: HeavyLightDecomposition, v: int): int = hld.P[v]\n    proc heavyRootOf*(hld: HeavyLightDecomposition, v: int): int = hld.PP[v]\n    proc heavyChildOf*(hld: HeavyLightDecomposition, v: int): int =\n        if hld.toSeq(v) == hld.N-1:\n            return -1\n        var cand = hld.toVtx(hld.toSeq(v) + 1)\n        if hld.PP[v] == hld.PP[cand]:\n            return cand\n        -1\n    proc lca*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        var (u, v) = (u, v)\n        if hld.PD[u] < hld.PD[v]:\n            swap(u, v)\n        while hld.PD[u] > hld.PD[v]:\n            u = hld.P[hld.PP[u]]\n        while hld.PP[u] != hld.PP[v]:\n            u = hld.P[hld.PP[u]]\n            v = hld.P[hld.PP[v]]\n        if hld.D[u] > hld.D[v]:\n            return v\n        u\n    proc dist*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2\n    proc path*(hld: HeavyLightDecomposition, r: int, c: int, include_root: bool, reverse_path: bool): seq[(int, int)] =\n        var (r, c) = (r, c)\n        var k = hld.PD[c] - hld.PD[r] + 1\n        if k <= 0:\n            return @[]\n        var res = newSeqWith(k, (0, 0))\n        for i in 0..<k-1:\n            res[i] = (hld.rangeL[hld.PP[c]], hld.rangeL[c] + 1)\n            c = hld.P[hld.PP[c]]\n        if hld.PP[r] != hld.PP[c] or hld.D[r] > hld.D[c]:\n            return @[]\n        var root_off = int(not include_root)\n        res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)\n        if res[^1][0] == res[^1][1]:\n            discard res.pop()\n            k -= 1\n        if reverse_path:\n            for i in 0..<k:\n                res[i] = (hld.N - res[i][1], hld.N - res[i][0])\n        else:\n            res.reverse()\n        res\n    proc subtree*(hld: HeavyLightDecomposition, p: int): (int, int) = (hld.rangeL[p], hld.rangeR[p])\n    iterator subtreeV*(hld: HeavyLightDecomposition, p: int):int=\n        for i in hld.rangeL[p]..<hld.rangeR[p]:\n            yield hld.toVtx(i)\n    proc median*(hld: HeavyLightDecomposition, x: int, y: int, z: int): int =\n        hld.lca(x, y) xor hld.lca(y, z) xor hld.lca(x, z)\n    proc la*(hld: HeavyLightDecomposition, starting: int, goal: int, d: int): int =\n        var (u, v, d) = (starting, goal, d)\n        if d < 0:\n            return -1\n        var g = hld.lca(u, v)\n        var dist0 = hld.D[u] - hld.D[g] * 2 + hld.D[v]\n        if dist0 < d:\n            return -1\n        var p = u\n        if hld.D[u] - hld.D[g] < d:\n            p = v\n            d = dist0 - d\n        while hld.D[p] - hld.D[hld.PP[p]] < d:\n            d -= hld.D[p] - hld.D[hld.PP[p]] + 1\n            p = hld.P[hld.PP[p]]\n        hld.I[hld.rangeL[p] - d]\n    iterator children*(hld: HeavyLightDecomposition, v: int): int =\n        var s = hld.rangeL[v] + 1\n        while s < hld.rangeR[v]:\n            var w = hld.toVtx(s)\n            yield w\n            s += hld.rangeR[w] - hld.rangeL[w]\n    \n\n    proc initAuxiliaryTree*(hld:HeavyLightDecomposition,v:seq[int]):UnWeightedUnDirectedTableGraph[int]=\n        var v = v.sortedByit(hld.toseq(it))\n        for i in 0..<(len(v)-1):\n            v.add(hld.lca(v[i],v[i+1]))\n        v = v.sortedByIt(hld.toseq(it)).deduplicate(true)\n        var stack :seq[int]\n        result = initUnWeightedUnDirectedTableGraph[int](v)\n        stack.add(v[0])\n        \n        for i in 1..<len(v):\n            while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n                discard stack.pop()\n            if len(stack) != 0:\n                result.add_edge(stack[^1],v[i])\n            stack.add(v[i])\n    \n    proc initAuxiliaryWeightedTree*(hld:HeavyLightDecomposition,v:seq[int]):WeightedUnDirectedTableGraph[int,int]=\n        var v = v.sortedByit(hld.toseq(it))\n        for i in 0..<(len(v)-1):\n            v.add(hld.lca(v[i],v[i+1]))\n        v = v.sortedByIt(hld.toseq(it)).deduplicate(true)\n        var stack :seq[int]\n        result = initWeightedUnDirectedTableGraph(v,int)\n        stack.add(v[0])\n        for i in 1..<len(v):\n            while len(stack) > 0 and hld.toSeq2Out(stack[^1]) < hld.toseq2In(v[i]):\n                discard stack.pop()\n            if len(stack) != 0:\n                result.add_edge(stack[^1],v[i],hld.depth(v[i])-hld.depth(stack[^1]))\n            stack.add(v[i])\n\n"
# source: src/atcoder/lazysegtree.nim
ImportExpand "atcoder/lazysegtree" <=== "when not declared ATCODER_LAZYSEGTREE_HPP:\n  const ATCODER_LAZYSEGTREE_HPP* = 1\n  \n  when not declared ATCODER_INTERNAL_BITOP_HPP:\n    const ATCODER_INTERNAL_BITOP_HPP* = 1\n    import std/bitops\n  \n  #ifdef _MSC_VER\n  #include <intrin.h>\n  #endif\n  \n  # @param n `0 <= n`\n  # @return minimum non-negative `x` s.t. `n <= 2**x`\n    proc ceil_pow2*(n:SomeInteger):int =\n      var x = 0\n      while (1.uint shl x) < n.uint: x.inc\n      return x\n  # @param n `1 <= n`\n  # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\n    proc bsf*(n:SomeInteger):int =\n      return countTrailingZeroBits(n)\n  \n  when not declared ATCODER_RANGEUTILS_HPP:\n    const ATCODER_RANGEUTILS_HPP* = 1\n    type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n    type IndexType* = int | BackwardsIndex\n    template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n    template `^^`*(s, i: untyped): untyped =\n      (when i is BackwardsIndex: s.len - int(i) else: int(i))\n    template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n      (s^^p.a, s^^p.b + 1)\n  \n  import std/sequtils\n  import std/algorithm\n  {.push inline.}\n  type LazySegTree*[S,F;p:static[tuple]] = object\n    len*, size*, log*:int\n    d*:seq[S]\n    lz*:seq[F]\n\n  template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =\n    block:\n      let u = ST.p.op(a, b)\n      u\n  template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n    block:\n      let u = ST.p.e()\n      u\n  template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =\n    block:\n      let u = ST.p.mapping(a, b)\n      u\n  template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =\n    block:\n      # こう書かないとバグる事象を検出\n      let u = ST.p.composition(a, b)\n      u\n  template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n    block:\n      let u = ST.p.id()\n      u\n\n  proc update[ST:LazySegTree](self:var ST, k:int) =\n    self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])\n  proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =\n    self.d[k] = ST.calc_mapping(f, self.d[k])\n    if k < self.size:\n      self.lz[k] = ST.calc_composition(f, self.lz[k])\n  proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =\n    self.all_apply(1, f)\n  proc push*[ST:LazySegTree](self: var ST, k:int) =\n    self.all_apply(2 * k, self.lz[k])\n    self.all_apply(2 * k + 1, self.lz[k])\n    self.lz[k] = ST.calc_id()\n\n  proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =\n    let\n      n = v.len\n      log = ceil_pow2(n)\n      size = 1 shl log\n    (self.len, self.size, self.log) = (n, size, log)\n    if self.d.len < 2 * size:\n      self.d = newSeqWith(2 * size, ST.calc_e())\n    else:\n      self.d.fill(0, 2 * size - 1, ST.calc_e())\n    for i in 0..<n:\n      self.d[size + i] = v[i]\n    if self.lz.len < size:\n      self.lz = newSeqWith(size, ST.calc_id())\n    else:\n      self.lz.fill(0, size - 1, ST.calc_id())\n    for i in countdown(size - 1, 1): self.update(i)\n  proc init*[ST:LazySegTree](self: var ST, n:int) = self.init(newSeqWith(n, ST.calc_e()))\n  proc init*[ST:LazySegTree](self: typedesc[ST], v:seq[ST.S] or int):ST = result.init(v)\n\n  template LazySegTreeType[S, F](op0, e0, mapping0, composition0, id0:untyped):typedesc[LazySegTree] =\n    proc op1(a, b:S):S {.gensym inline.} = op0(a, b)\n    proc e1():S {.gensym inline.} = e0()\n    proc mapping1(f:F, s:S):S {.gensym inline.} = mapping0(f, s)\n    proc composition1(f1, f2:F):F {.gensym inline.} = composition0(f1, f2)\n    proc id1():F {.gensym inline.} = id0()\n    LazySegTree[S, F, (op:op1, e:e1, mapping:mapping1, composition:composition1, id:id1)]\n\n  template getType*(ST:typedesc[LazySegTree], S, F:typedesc, op, e, mapping, composition, id:untyped):typedesc[LazySegTree] =\n    LazySegTreeType[S, F](op, e, mapping, composition, id)\n\n  template initLazySegTree*[S, F](v:seq[S] or int, op, e, mapping, composition, id:untyped):auto =\n    LazySegTreeType[S, F](op, e, mapping, composition, id).init(v)\n\n  proc set*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    self.d[p] = x\n    for i in 1..self.log: self.update(p shr i)\n\n  proc get*[ST:LazySegTree](self: var ST, p:IndexType):ST.S =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    return self.d[p]\n\n  proc `[]=`*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) = self.set(p, x)\n  proc `[]`*[ST:LazySegTree](self: var ST, p:IndexType):ST.S = self.get(p)\n\n  proc prod*[ST:LazySegTree](self:var ST, p:RangeType):ST.S =\n    var (l, r) = self.halfOpenEndpoints(p)\n    assert 0 <= l and l <= r and r <= self.len\n    if l == r: return ST.calc_e()\n\n    l += self.size\n    r += self.size\n\n    for i in countdown(self.log, 1):\n      if ((l shr i) shl i) != l: self.push(l shr i)\n      if ((r shr i) shl i) != r: self.push(r shr i)\n\n    var sml, smr = ST.calc_e()\n    while l < r:\n      if (l and 1) != 0: sml = ST.calc_op(sml, self.d[l]);l.inc\n      if (r and 1) != 0: r.dec;smr = ST.calc_op(self.d[r], smr)\n      l = l shr 1\n      r = r shr 1\n    return ST.calc_op(sml, smr)\n\n  proc `[]`*[ST:LazySegTree](self: var ST, p:RangeType):ST.S = self.prod(p)\n\n  proc all_prod*[ST:LazySegTree](self:ST):auto = self.d[1]\n\n  proc apply*[ST:LazySegTree](self: var ST, p:IndexType, f:ST.F) =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    self.d[p] = ST.calc_mapping(f, self.d[p])\n    for i in 1..self.log: self.update(p shr i)\n  proc apply*[ST:LazySegTree](self: var ST, p:RangeType, f:ST.F) =\n    var (l, r) = self.halfOpenEndpoints(p)\n    assert 0 <= l and l <= r and r <= self.len\n    if l == r: return\n\n    l += self.size\n    r += self.size\n\n    for i in countdown(self.log, 1):\n      if ((l shr i) shl i) != l: self.push(l shr i)\n      if ((r shr i) shl i) != r: self.push((r - 1) shr i)\n\n    block:\n      var (l, r) = (l, r)\n      while l < r:\n        if (l and 1) != 0: self.all_apply(l, f);l.inc\n        if (r and 1) != 0: r.dec;self.all_apply(r, f)\n        l = l shr 1\n        r = r shr 1\n\n    for i in 1..self.log:\n      if ((l shr i) shl i) != l: self.update(l shr i)\n      if ((r shr i) shl i) != r: self.update((r - 1) shr i)\n\n#  template <bool (*g)(S)> int max_right(int l) {\n#    return max_right(l, [](S x) { return g(x); });\n#  }\n  proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =\n    var l = self^^l\n    assert l in 0..self.len\n    assert g(ST.calc_e())\n    if l == self.len: return self.len\n    l += self.size\n    for i in countdown(self.log, 1): self.push(l shr i)\n    var sm = ST.calc_e()\n    while true:\n      while l mod 2 == 0: l = l shr 1\n      if not g(ST.calc_op(sm, self.d[l])):\n        while l < self.size:\n          self.push(l)\n          l = (2 * l)\n          if g(ST.calc_op(sm, self.d[l])):\n            sm = ST.calc_op(sm, self.d[l])\n            l.inc\n        return l - self.size\n      sm = ST.calc_op(sm, self.d[l])\n      l.inc\n      if not((l and -l) != l): break\n    return self.len\n\n#  template <bool (*g)(S)> int min_left(int r) {\n#    return min_left(r, [](S x) { return g(x); });\n#  }\n  proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =\n    var r = self^^r\n    assert r in 0..self.len\n    assert(g(ST.calc_e()))\n    if r == 0: return 0\n    r += self.size\n    for i in countdown(self.log, 1): self.push((r - 1) shr i)\n    var sm = ST.calc_e()\n    while true:\n      r.dec\n      while r > 1 and r mod 2 == 1: r = r shr 1\n      if not g(ST.calc_op(self.d[r], sm)):\n        while r < self.size:\n          self.push(r)\n          r = (2 * r + 1)\n          if g(ST.calc_op(self.d[r], sm)):\n            sm = ST.calc_op(self.d[r], sm)\n            r.dec\n        return r + 1 - self.size\n      sm = ST.calc_op(self.d[r], sm)\n      if not ((r and -r) != r): break\n    return 0\n  {.pop.}\n"
# source: src/cplib/utils/binary_search.nim
ImportExpand "cplib/utils/binary_search" <=== "when not declared CPLIB_UTILS_BINARY_SEARCH:\n    const CPLIB_UTILS_BINARY_SEARCH* = 1\n    proc meguru_bisect*(ok, ng: int, is_ok: proc(x: int): bool): int =\n        var\n            ok = ok\n            ng = ng\n        while abs(ok - ng) > 1:\n            var mid = (ok + ng) div 2\n            if is_ok(mid): ok = mid\n            else: ng = mid\n        return ok\n\n    proc meguru_bisect*(ok, ng: SomeFloat, is_ok: proc(x: SomeFloat): bool, eps: SomeFloat = 1e-10): SomeFloat =\n        var\n            ok = ok\n            ng = ng\n        while abs(ok - ng) > eps and abs(ok - ng) / max(ok, ng) > eps:\n            var mid = (ok + ng) / 2\n            if is_ok(mid): ok = mid\n            else: ng = mid\n        return ok\n"
# source: src/cplib/collections/segtree.nim
ImportExpand "cplib/collections/segtree" <=== "when not declared CPLIB_COLLECTIONS_SEGTREE:\n    const CPLIB_COLLECTIONS_SEGTREE* = 1\n    import algorithm\n    import strutils\n    import sequtils\n    type SegmentTree*[T] = ref object\n        default: T\n        merge: proc(x: T, y: T): T\n        arr*: seq[T]\n        lastnode: int\n        length: int\n    proc initSegmentTree*[T](v: seq[T], merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =\n        var lastnode = 1\n        while lastnode < len(v):\n            lastnode*=2\n        var arr = newSeq[T](2*lastnode)\n        arr.fill(default)\n        var self = SegmentTree[T](default: default, merge: merge, arr: arr, lastnode: lastnode, length: len(v))\n        #1-indexedで作成する\n        for i in 0..<len(v):\n            self.arr[self.lastnode+i] = v[i]\n        for i in countdown(lastnode-1, 1):\n            self.arr[i] = self.merge(self.arr[2*i], self.arr[2*i+1])\n        return self\n    proc initSegmentTree*[T](n: int, merge: proc(x: T, y: T): T, default: T): SegmentTree[T] =\n        initSegmentTree(newSeqWith(n, default), merge, default)\n\n    proc update*[T](self: SegmentTree[T], x: Natural, val: T) =\n        assert x < self.length\n        var x = x\n        x += self.lastnode\n        self.arr[x] = val\n        while x > 1:\n            x = x shr 1\n            self.arr[x] = self.merge(self.arr[2*x], self.arr[2*x+1])\n    proc get*[T](self: SegmentTree[T], q_left: Natural, q_right: Natural): T =\n        assert q_left <= q_right and 0 <= q_left and q_right <= self.length\n        var q_left = q_left\n        var q_right = q_right\n        q_left += self.lastnode\n        q_right += self.lastnode\n        var (lres, rres) = (self.default, self.default)\n        while q_left < q_right:\n            if (q_left and 1) > 0:\n                lres = self.merge(lres, self.arr[q_left])\n                q_left += 1\n            if (q_right and 1) > 0:\n                q_right -= 1\n                rres = self.merge(self.arr[q_right], rres)\n            q_left = q_left shr 1\n            q_right = q_right shr 1\n        return self.merge(lres, rres)\n    proc get*[T](self: SegmentTree[T], segment: HSlice[int, int]): T =\n        assert segment.a <= segment.b + 1 and 0 <= segment.a and segment.b+1 <= self.length\n        return self.get(segment.a, segment.b+1)\n    proc `[]`*[T](self: SegmentTree[T], segment: HSlice[int, int]): T = self.get(segment)\n    proc `[]`*[T](self: SegmentTree[T], index: Natural): T =\n        assert index < self.length\n        return self.arr[index+self.lastnode]\n    proc `[]=`*[T](self: SegmentTree[T], index: Natural, val: T) =\n        assert index < self.length\n        self.update(index, val)\n    proc get_all*[T](self: SegmentTree[T]): T =\n        return self.arr[1]\n    proc len*[T](self: SegmentTree[T]): int =\n        return self.length\n    proc `$`*[T](self: SegmentTree[T]): string =\n        var s = self.arr.len div 2\n        return self.arr[s..<s+self.len].join(\" \")\n    template newSegWith*(V, merge, default: untyped): untyped =\n        initSegmentTree[typeof(default)](V, proc (l{.inject.}, r{.inject.}: typeof(default)): typeof(default) = merge, default)\n    proc max_right*[T](self: SegmentTree[T], l: int, f: proc(l: T): bool): int =\n        assert 0 <= l and l <= self.len\n        assert f(self.default)\n        if l == self.len: return self.len\n        var l = l + self.lastnode\n        var sm = self.default\n        while true:\n            while l mod 2 == 0: l = (l shr 1)\n            if not f(self.merge(sm, self.arr[l])):\n                while l < self.lastnode:\n                    l *= 2\n                    if f(self.merge(sm, self.arr[l])):\n                        sm = self.merge(sm, self.arr[l])\n                        l += 1\n                return l - self.lastnode\n            sm = self.merge(sm, self.arr[l])\n            l += 1\n            if (l and -l) == l: break\n        return self.len\n    proc min_left*[T](self: SegmentTree[T], r: int, f: proc(l: T): bool): int =\n        assert 0 <= r and r <= self.len\n        assert f(self.default)\n        if r == 0: return 0\n        var r = r + self.lastnode\n        var sm = self.default\n        while true:\n            r -= 1\n            while ((r > 1) and (r mod 2 != 0)): r = (r shr 1)\n            if not f(self.merge(self.arr[r], sm)):\n                while r < self.lastnode:\n                    r = 2 * r + 1\n                    if f(self.merge(self.arr[r], sm)):\n                        sm = self.merge(self.arr[r], sm)\n                        r -= 1\n                return r + 1 - self.lastnode\n            sm = self.merge(self.arr[r], sm)\n            if (r and -r) == r: break\n        return 0\n"


proc initRangeAddRangeMinSegtree[T](v:seq[T]):auto=
    type S = (T,int)
    type F = T
    proc op(a,b:S):S=
        if a[0] == b[0]:
            return (a[0],a[1]+b[1])
        elif a[0] < b[0]:
            return a
        else:
            return b
    proc e():S=(INF,1)
    proc mapping(f:F,x:S):S=(x[0]+f,x[1])
    proc composition(f,g:F):F=f+g
    proc id():F=0
    return LazySegTree.getType(S, F, op, e, mapping, composition, id).init(v.mapit((it,1)))

var N = ii()

var G = initUnWeightedUnDirectedGraph(N)

# クエリ1 : 色反転
# クエリ2 : yを根としたときに、xが含まれないような部分木に含まれる黒色の頂点の数を出力

# クエリ2はyを根としたときにxが含まれるような部分木に含まれる黒色の頂点の数と解釈可能

# x = y : すべての黒色頂点
# yが黒 : それも含む

# 部分木クエリといえばオイラーツアーだが...


# range add range 最小値カウント
# -> 遅延セグ木に乗る

# hldするなどの行為により部分木クエリは可能になった。

# xがyの子孫にあるとき : yについて部分木クエリ - yからx方向に1進んだ頂点から部分木クエリ + 親方向
# 親方向ってどうやってやるんだ???????

# 親方向ではじめて別の部分木に頂点があるところを見つけて、そこの部分木クエリから - yからx方向に1進んだ頂点から部分木クエリ

# yがxの子孫にあるとき : yについて部分木クエリ


for _ in range(N-1):
    var a,b = ii()-1
    G.add_edge(a,b)
var tmp = lii(N)
var C = newsegwith(N,l+r,0)
var T = G.initHld(0)
for i in range(N):
    C[T.toseq(i)] = tmp[i]

var st = initRangeAddRangeMinSegtree(newseqwith(N,0))

for i in range(N):
    if C[T.toseq(i)] == 1:
        for (l,r) in T.path(0,i,true,false):
            st.apply(l..<r,1)

var Q = ii()
for _ in range(Q):
    var t = ii()
    if t == 1:
        var v = ii()-1
        if C[T.toseq(v)] == 1:
            for (l,r) in T.path(0,v,true,false):
                st.apply(l..<r,-1)
        else:
            for (l,r) in T.path(0,v,true,false):
                st.apply(l..<r,1)
        C[T.toseq(v)] = C[T.toseq(v)] ^ 1
    else:
        #echo C
        #echo (0..<N).toseq().mapit(T.toseq(it)).mapit(C[it])
        var x,y = ii()-1
        var (l,r) = T.subtree(y)
        proc get_subtree_query(x:int):int=
            # 部分木内の黒色の頂点を全て含むために必要な頂点数
            var (l,r) = T.subtree(x)
            var res = st[l..<r]
            #544echo res
            if res[0] != 0:
                return r-l
            return r-l-res[1]
        
        proc all_black_lca(ROOT:int=0):int=
            # すべての黒色の頂点のlca
            # 適当な黒色の頂点を取ってあげる。
            proc f(x:int):bool=
                return x <= 0
            var x = T.toVtx(C.max_right(T.toseq(ROOT),f))
            #echo "?",x
            if x == ROOT:
                return ROOT
            # その頂点から上方向に二分探索
            #echo "!",x
            #echo C
            var tmp = T.la(0,x,1)
            if st[T.toseq(ROOT)][0] != st[T.toseq(tmp)][0]:
                return 0
            var dist = T.dist(ROOT,x)
            proc is_ok(arg:int):bool=
                var x = T.la(ROOT,x,arg)
                return st[T.toseq(ROOT)][0] == st[T.toseq(x)][0]
            var res = meguru_bisect(0,dist+1,is_ok)
            #echo "res:",res
            var root = T.la(ROOT,x,res)
            #echo "root:",root
            return root
        if C.get_all() == 0:
            echo 0
            continue
        if x == y:
            # 黒色全て
            # 黒色頂点たちすべてのlcaが求めたい。
            if C.get_all() == 0:
                echo 0
            else:
                var lca = all_black_lca()
                #echo "lca:",lca
                echo get_subtree_query(lca)
        elif y == 0:
            var lca = all_black_lca()
            #echo "!:",lca
            if lca == 0:
                var z = T.la(y,x,1)
                echo get_subtree_query(0) - get_subtree_query(z)
                assert get_subtree_query(0) - get_subtree_query(z) >= 0
            else:
                # ある部分木のみに黒が含まれている
                # その部分木の方向がxと一致しているか判定すればok
                var z = T.la(y,x,1)
                if st[T.toseq(y)][0] == st[T.toseq(z)][0]:
                    echo 0
                else:
                    echo get_subtree_query(lca)
        elif T.toseq(x) notin l..<r:
            # xがyの子孫でないパターン
            if st[T.toseq(y)][0] == 0:
                echo 0
            else:
                var tmp = all_black_lca(y)
                #echo "!",tmp
                echo get_subtree_query(tmp)
        else:
            # xがyの子孫であるパターン
            if st[T.toseq(y)][0] == 0:
                var lca = all_black_lca()
                echo get_subtree_query(lca)
            else:
                var z = T.la(y,x,1)
                #echo "!",st[T.toseq(y)][0] ," ", st[T.toseq(z)][0]," ",get_subtree_query(z)," ",z
                if st[T.toseq(y)][0] != st[T.toseq(z)][0]:
                    var lca = all_black_lca()
                    echo get_subtree_query(lca) - get_subtree_query(z)
                    assert get_subtree_query(lca) - get_subtree_query(z) >= 0
                else:
                    #echo "?"
                    var dist = T.dist(0,y)
                    proc is_ok(arg:int):bool=
                        var x = T.la(y,0,arg)
                        return st[T.toseq(x)][0] == st[T.toseq(y)][0]
                    #echo st[T.toseq(0)]," ",st[T.toseq(1)]," ",st[T.toseq(2)]
                    if st[T.toseq(0)][0] == st[T.toseq(z)][0]:
                        echo 0
                    else:
                        var res = meguru_bisect(0,dist,is_ok)
                        #echo "!",res
                        var root = T.la(y,0,res)
                        var lca = all_black_lca()
                        #echo "root:",root
                        echo get_subtree_query(lca)-get_subtree_query(root)
                        assert get_subtree_query(lca)-get_subtree_query(root) >= 0

0