結果
| 問題 | No.28 末尾最適化 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2026-02-09 20:33:36 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 22,684 bytes |
| 記録 | |
| コンパイル時間 | 8,449 ms |
| コンパイル使用メモリ | 304,892 KB |
| 実行使用メモリ | 7,972 KB |
| 最終ジャッジ日時 | 2026-02-09 20:33:52 |
| 合計ジャッジ時間 | 6,769 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 WA * 1 |
ソースコード
#line 1 "No_28_\u672b\u5c3e\u6700\u9069\u5316.cpp"
#define YRSD
#line 2 "YRS/all.hpp"
#line 2 "YRS/aa/head.hpp"
#include <iostream>
#include <algorithm>
#include <array>
#include <bitset>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <string>
#include <tuple>
#include <bit>
#include <chrono>
#include <functional>
#include <iomanip>
#include <utility>
#include <type_traits>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <limits>
#include <ranges>
#include <concepts>
#define TE template <typename T>
#define TES template <typename T, typename ...S>
#define Z auto
#define ep emplace_back
#define eb emplace
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define OV4(a, b, c, d, e, ...) e
#define FOR1(a) for (int _ = 0; _ < (a); ++_)
#define FOR2(i, a) for (int i = 0; i < (a); ++i)
#define FOR3(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR4(i, a, b, c) for (int i = (a); i < (b); i += (c))
#define FOR(...) OV4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR1_R(a) for (int _ = (a) - 1; _ >= 0; --_)
#define FOR2_R(i, a) for (int i = (a) - 1; i >= 0; --i)
#define FOR3_R(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define FOR4_R(i, a, b, c) for (int i = (b) - 1; i >= (a); i -= (c))
#define FOR_R(...) OV4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (int t = (s); t > -1; t = (t == 0 ? -1 : (t - 1) & s))
#define sort ranges::sort
using namespace std;
TE using vc = vector<T>;
TE using vvc = vc<vc<T>>;
TE using T1 = tuple<T>;
TE using T2 = tuple<T, T>;
TE using T3 = tuple<T, T, T>;
TE using T4 = tuple<T, T, T, T>;
TE using max_heap = priority_queue<T>;
TE using min_heap = priority_queue<T, vc<T>, greater<T>>;
using u8 = unsigned char; using uint = unsigned int; using ll = long long; using ull = unsigned long long;
using ld = long double; using i128 = __int128; using u128 = __uint128_t; using f128 = __float128;
using u16 = uint16_t;
using PII = pair<int, int>; using PLL = pair<ll, ll>;
#ifdef YRSD
constexpr bool dbg = 1;
#else
constexpr bool dbg = 0;
#endif
#line 2 "YRS/IO/IO.hpp"
istream &operator>>(istream &I, i128 &x) {
static string s;
I >> s;
int f = s[0] == '-';
x = 0;
const int N = (int)s.size();
FOR(i, f, N) x = x * 10 + s[i] - '0';
if (f) x = -x;
return I;
}
ostream &operator<<(ostream &O, i128 x) {
static string s;
s.clear();
bool f = x < 0;
if (f) x = -x;
while (x) s += '0' + x % 10, x /= 10;
if (s.empty()) s += '0';
if (f) s += '-';
reverse(all(s));
return O << s;
}
istream &operator>>(istream &I, f128 &x) {
static string s;
I >> s, x = stold(s);
return I;
}
ostream &operator<<(ostream &O, const f128 x) { return O << ld(x); }
template <typename ...S> istream &operator>>(istream &I, tuple<S...> &t) {
return apply([&I](Z &...args) { ((I >> args), ...); }, t), I;
}
template <typename T, typename U>
istream &operator>>(istream &I, pair<T, U> &x) {
return I >> x.fi >> x.se;
}
template <typename T, typename U>
ostream &operator<<(ostream &O, const pair<T, U> &x) {
return O << x.fi << ' ' << x.se;
}
template <typename T>
requires requires(T &c) { begin(c); end(c); } and
(not is_same_v<decay_t<T>, string>)
istream &operator>>(istream &I, T &c) {
for (Z &e : c) I >> e;
return I;
}
template <typename T>requires requires(const T &c) { begin(c); end(c); } and
(not is_same_v<decay_t<T>, const char*>) and
(not is_same_v<decay_t<T>, string>) and
(not is_array_v<remove_reference_t<T>> or
not is_same_v<remove_extent_t<remove_reference_t<T>>, char>)
ostream &operator<<(ostream &O, const T &a) {
if (a.empty()) return O;
Z i = a.begin();
O << *i++;
for (; i != a.end(); ++i) O << ' ' << *i;
return O;
}
void IN() {}
TE void IN(T &x, Z &...s) { cin >> x, IN(s...); }
void print() { cout << '\n'; }
TES void print(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
print(forward<S>(y)...);
}
void put() { cout << ' '; }
TES void put(T &&x, S &&...y) {
cout << x;
if constexpr (sizeof...(S)) cout << ' ';
put(forward<S>(y)...);
}
#define INT(...) int __VA_ARGS__; IN(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; IN(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__; IN(__VA_ARGS__)
#define I128(...) i128 __VA_ARGS__; IN(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; IN(__VA_ARGS__)
#define CH(...) char __VA_ARGS__; IN(__VA_ARGS__)
#define REAL(...) re __VA_ARGS__; IN(__VA_ARGS__)
#define VEC(T, a, n) vc<T> a(n); IN(a)
#define VVEC(T, a, n, m) vvc<T> a(n, vc<T>(m)); IN(a)
void YES(bool o = 1) { print(o ? "YES" : "NO"); }
void Yes(bool o = 1) { print(o ? "Yes" : "No"); }
void yes(bool o = 1) { print(o ? "yes" : "no"); }
void NO(bool o = 1) { YES(not o); }
void No(bool o = 1) { Yes(not o); }
void no(bool o = 1) { yes(not o); }
void ALICE(bool o = 1) { print(o ? "ALICE" : "BOB"); }
void Alice(bool o = 1) { print(o ? "Alice" : "Bob"); }
void alice(bool o = 1) { print(o ? "alice" : "bob"); }
void BOB(bool o = 1) { ALICE(not o); }
void Bob(bool o = 1) { Alice(not o); }
void bob(bool o = 1) { alice(not o); }
void POSSIBLE(bool o = 1) { print(o ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool o = 1) { print(o ? "Possible" : "Impossible"); }
void possible(bool o = 1) { print(o ? "possible" : "impossible"); }
void IMPOSSIBLE(bool o = 1) { POSSIBLE(not o); }
void Impossible(bool o = 1) { Possible(not o); }
void impossible(bool o = 1) { possible(not o); }
void TAK(bool o = 1) { print(o ? "TAK" : "NIE"); }
void NIE(bool o = 1) { TAK(not o); }
#line 5 "YRS/all.hpp"
#if (__cplusplus >= 202002L)
#include <numbers>
constexpr ld pi = numbers::pi;
#endif
TE constexpr T inf = numeric_limits<T>::max();
template <> constexpr i128 inf<i128> = i128(numeric_limits<ll>::max()) * 2'000'000'000'000'000'000;
template <typename T, typename U>
constexpr pair<T, U> inf<pair<T, U>> = {inf<T>, inf<U>};
TE constexpr static inline int pc(T x) { return popcount(make_unsigned_t<T>(x)); }
constexpr static inline ll len(const Z &a) { return a.size(); }
void reverse(Z &a) { reverse(all(a)); }
void unique(Z &a) {
sort(a);
a.erase(unique(all(a)), a.end());
}
TE vc<int> inverse(const vc<T> &a) {
int N = len(a);
vc<int> b(N, -1);
FOR(i, N) if (a[i] != -1) b[a[i]] = i;
return b;
}
Z QMAX(const Z &a) { return *max_element(all(a)); }
Z QMIN(const Z &a) { return *min_element(all(a)); }
constexpr bool chmax(Z &a, const Z &b) { return (a < b ? a = b, true : false); }
constexpr bool chmin(Z &a, const Z &b) { return (a > b ? a = b, true : false); }
template <typename T, typename U>
constexpr static pair<T, U> operator-(const pair<T, U> &p) {
return pair<T, U>(-p.fi, -p.se);
}
vc<int> argsort(const Z &a) {
vc<int> I(len(a));
iota(all(I), 0);
sort(I, [&](int i, int k) { return a[i] < a[k] or (a[i] == a[k] and i < k); });
return I;
}
TE vc<T> rearrange(const vc<T> &a, const vc<int> &I) {
int N = len(I);
vc<T> b(N);
FOR(i, N) b[i] = a[I[i]];
return b;
}
template <int off = 1, typename T>
vc<T> pre_sum(const vc<T> &a) {
int N = len(a);
vc<T> c(N + 1);
FOR(i, N) c[i + 1] = c[i] + a[i];
if constexpr (off == 0) c.erase(c.begin());
return c;
}
TE constexpr static int topbit(T x) {
if (x == 0) return - 1;
if constexpr (sizeof(T) <= 4) return 31 - __builtin_clz(x);
else return 63 - __builtin_clzll(x);
}
TE constexpr static int lowbit(T x) {
if (x == 0) return -1;
if constexpr (sizeof(T) <= 4) return __builtin_ctz(x);
else return __builtin_ctzll(x);
}
TE constexpr T floor(T x, T y) { return x / y - (x % y and (x ^ y) < 0); }
TE constexpr T ceil(T x, T y) { return floor(x + y - 1, y); }
TE constexpr T bmod(T x, T y) { return x - floor(x, y) * x; }
TE constexpr pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return pair{q, x - q * y};
}
template <typename T = ll>
T SUM(const Z &v) {
return accumulate(all(v), T(0));
}
int lb(const Z &a, Z x) { return lower_bound(all(a), x) - a.begin(); }
int ub(const Z &a, Z x) { return upper_bound(all(a), x) - a.begin(); }
template <bool ck = true>
ll bina(Z F, ll l, ll r) {
if constexpr (ck) assert(F(l));
while (abs(l - r) > 1) {
ll x = (r + l) >> 1;
(F(x) ? l : r) = x;
}
return l;
}
TE T bina_real(const Z &F, T l, T r, int c = 100) {
while (c--) {
T m = (l + r) / 2;
(F(m) ? l : r) = m;
}
return (l + r) / 2;
}
Z pop(Z &s) {
if constexpr (requires { s.pop_back(); }) {
Z x = s.back();
return s.pop_back(), x;
} else if constexpr (requires { s.top(); }) {
Z x = s.top();
return s.pop(), x;
} else {
Z x = s.front();
return s.pop(), x;
}
}
void setp(int x) { cout << fixed << setprecision(x); }
TE inline void sh(vc<T> &a, int N) {
a.resize(N, T(0));
}
#line 1 "YRS/debug.hpp"
#ifdef YRSD
void DBG() { cerr << "]" << endl; }
TES void DBG(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
DBG(forward<S>(y)...);
}
#define debug(...) cerr << "[" << __LINE__ << "]: [" #__VA_ARGS__ "] = [", DBG(__VA_ARGS__)
void ERR() { cerr << endl; }
TES void ERR(T &&x, S &&...y) {
cerr << x;
if constexpr (sizeof...(S)) cerr << ", ";
ERR(forward<S>(y)...);
}
#define err(...) cerr << "[" << __LINE__ << "]: ", ERR(__VA_ARGS__)
#define asser assert
#else
#define debug(...) void(0721)
#define err(...) void(0721)
#define asser(...) void(0721)
#endif
#line 4 "No_28_\u672b\u5c3e\u6700\u9069\u5316.cpp"
// #include "YRS/IO/fast_io.hpp"
// #include "YRS/random/rng.hpp"
#line 2 "YRS/mod/modint.hpp"
#line 2 "YRS/mod/modint_common.hpp"
template <class T>
concept is_mint = requires(T x) {
{ T::get_mod() };
{ T::gen(0ull) } -> same_as<T>;
x.val;
};
template <class mint>
concept has_const_mod =
requires { integral_constant<int, (int)mint::get_mod()> {}; };
template <typename mint>
static vc<mint> &invs() {
static vc<mint> a{0, 1};
return a;
}
template <typename mint>
static vc<mint> &fac() {
static vc<mint> a{1, 1};
return a;
}
template <typename mint>
static vc<mint> &ifac() {
static vc<mint> a{1, 1};
return a;
}
template <typename mint>
static int Set_inv(int N) {
static vc<mint> &inv = invs<mint>();
if (len(inv) >= N) return N;
inv.resize(N + 1);
inv[0] = 1, inv[1] = 1;
FOR(i, 1, N) inv[i + 1] = inv[i] * i;
mint t = pop(inv).inv();
FOR_R(i, N) inv[i] *= t, t *= i;
return N;
}
template <typename mint>
static int Set_comb(int N) {
static vector<mint> &fa = fac<mint>(), &ifa = ifac<mint>();
if (len(fa) >= N) return N;
fa.resize(N);
ifa.resize(N);
FOR(i, 1, N) fa[i] = fa[i - 1] * i;
ifa[N - 1] = fa[N - 1].inv();
FOR_R(i, N - 1) ifa[i] = ifa[i + 1] * (i + 1);
return N;
}
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vc<mint> &a = invs<mint>();
assert(0 <= n);
while (len(a) <= n) {
int k = len(a);
int q = (mod + k - 1) / k;
int r = k * q - mod;
a.ep(a[r] * mint(q));
}
return a[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
static vc<mint> &a = fac<mint>();
assert(0 <= n);
if (n >= mod) return 0;
while (len(a) <= n) {
int k = len(a);
a.ep(a[k - 1] * mint(k));
}
return a[n];
}
template <typename mint>
mint fact_inv(int n) {
static vc<mint> &a = ifac<mint>();
if (n < 0) return mint(0);
while (len(a) <= n)
a.ep(a[len(a) - 1] * inv<mint>(len(a)));
return a[n];
}
template <typename mint, typename... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, typename Head, typename... Tail>
mint multinomial(Head&& head, Tail&&... tail) {
return fact<mint>(head) * fact_invs<mint>(forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 or n < k) return 0;
static vc<vc<mint>> C;
static int H = 0, W = 0;
Z calc = [&](int i, int j) -> mint {
if (i == 0) return(j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
for (int i = 0; i < H; ++i) {
C[i].resize(k + 1);
for (int j = W; j < k + 1; ++j) {
C[i][j] = calc(i, j);
}
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
for (int i = H; i < n + 1; ++i) {
C[i].resize(W);
for (int j = 0; j < W; ++j) {
C[i][j] = calc(i, j);
}
}
H = n + 1;
}
return C[n][k];
}
template <typename mint>
mint C(int N, int K) {
assert(N >= 0);
if (K < 0 or N < K) return 0;
return fact<mint>(N) * fact_inv<mint>(K) * fact_inv<mint>(N - K);
}
template <typename mint>
mint lucas(ll N, ll K) {
static constexpr int P = mint::get_mod();
if (K > N) return 0;
if (K == 0) return 1;
return C<mint>(N % P, K % P) * lucas<mint>(N / P, K / P);
}
template <typename mint, bool large = false, bool dense = false>
mint binom(ll n, ll k) {
assert(n >= 0);
if (k < 0 or n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (not large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k and k <= n);
if (not large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / binom<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) return (d == 0 ? mint(1) : mint(0));
return binom<mint, large, dense>(n + d - 1, d);
}
#define CC C<mint>
#define fac fact<mint>
#define ifac fact_inv<mint>
#define set_comb Set_comb<mint>
#define set_inv Set_inv<mint>
#line 4 "YRS/mod/modint.hpp"
#define M modint
#define C constexpr
template <int mod>
struct M {
static C uint m = mod;
uint val;
C M() : val(0) {}
C M(uint x) : val(x % m) {}
C M(ull x) : val(x % m) {}
C M(u128 x) : val(x % m) {}
C M(int x) : val((x %= mod) < 0 ? x + mod : x) {}
C M(ll x) : val((x %= mod) < 0 ? x + mod : x) {}
C M(i128 x) : val((x %= mod) < 0 ? x + mod : x) {}
C M &operator+=(M p) {
if ((val += p.val) >= m) val -= m;
return *this;
}
C M &operator-=(M p) {
if ((val += m - p.val) >= m) val -= m;
return *this;
}
C M operator+(M p) const { return M(*this) += p; }
C M operator-(M p) const { return M(*this) -= p; }
C M &operator*=(M p) {
val = ull(val) * p.val % m;
return *this;
}
C M operator*(M p) const { return M(*this) *= p; }
C M &operator/=(M p) { return *this *= p.inv(); }
C M operator/(M p) const { return M(*this) /= p; }
C M operator-() const { return M::gen(val ? mod - val : 0); }
C M inv() const {
int a = val, b = mod, x = 1, y = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(x -= t * y, y);
}
return M(x);
}
C M pow(ll k) const {
if (k < 0) return inv().pow(-k);
M s(1), a(val);
for (; k; k >>= 1, a *= a)
if (k & 1) s *= a;
return s;
}
C bool operator<(M p) const { return val < p.val; }
C bool operator==(M p) const { return val == p.val; }
C bool operator!=(M p) const { return val != p.val; }
static C M gen(uint x) {
M s;
s.val = x;
return s;
}
friend istream &operator>>(istream &is, M &p) {
ll x;
is >> x;
p = x;
return is;
}
friend ostream &operator<<(ostream &os, M p) { return os << p.val; }
static C int get_mod() { return mod; }
static C PII ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 998244353) return {23, 31};
if (mod == 120586241) return {20, 74066978};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static C bool can_ntt() { return ntt_info().fi != -1; }
};
#undef M
#undef C
using M99 = modint<998244353>;
using M17 = modint<1000000007>;
#ifdef FIO
template <int mod>
void rd(modint<mod> &x) {
LL(y);
x = y;
}
template <int mod>
void wt(modint<mod> x) {
wt(x.val);
}
#endif
#line 2 "YRS/pr/factors.hpp"
#line 2 "YRS/pr/prims_test.hpp"
struct MM {
using uu = unsigned __int128;
inline static ull m, r, nn;
static void set_mod(ull m) {
MM::m = m;
nn = -uu(m) % m;
r = m;
FOR(5) r *= 2 - m * r;
r = -r;
}
static ull reduce(uu x) {
return (x + uu(ull(x) * r) * m) >> 64;
}
ull x;
MM() : x(0) {}
MM(ull x) : x(reduce(uu(x) * nn)) {}
ull val() const {
ull y = reduce(x);
return y >= m ? y - m : y;
}
MM &operator+=(MM y) {
x += y.x - (m << 1);
x = (ll(x) < 0 ? x + (m << 1) : x);
return *this;
}
MM &operator-=(MM y) {
x -= y.x;
x = (ll(x) < 0 ? x + (m << 1) : x);
return *this;
}
MM &operator*=(MM y) {
x = reduce(uu(x) * y.x);
return *this;
}
MM operator+(MM y) const { return MM(*this) += y; }
MM operator-(MM y) const { return MM(*this) -= y; }
MM operator*(MM y) const { return MM(*this) *= y; }
bool operator==(MM y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(MM y) const { return not operator==(y); }
MM pow(ull k) const {
MM r = 1, a = *this;
for (; k; k >>= 1, a *= a) if (k & 1) r *= a;
return r;
}
};
bool primetest(const ull x) {
if (x == 2 or x == 3 or x == 5 or x == 7) return 1;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return 0;
if (x < 121) return x > 1;
const ull d = (x - 1) >> __builtin_ctzll(x - 1);
MM::set_mod(x);
const MM o(1), mo(x - 1);
Z f = [&](ull a) -> bool {
MM y = MM(a).pow(d);
ull t = d;
while (y != o and y != mo and t != x - 1) y *= y, t <<= 1;
if (y != mo and t % 2 == 0) return 1;
return 0;
};
if (x < (1ull << 32)) {
for (ull a : {2, 7, 61}) if (f(a)) return 0;
} else {
for (ull a : {2, 325, 9'375, 281'78, 450'775, 978'050'4, 179'526'502'2}) {
if (x <= a) return 1;
if (f(a)) return 0;
}
}
return 1;
}
ll rho(ll n, ll c) {
MM::set_mod(n);
const MM cc(c);
Z f = [&](MM x) { return x * x + cc; };
MM x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1ll << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r and g == 1; k += m) {
z = y;
FOR(i, min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
#line 2 "YRS/random/rng.hpp"
#include <random>
#ifdef MeIoN
std::mt19937 rg(0);
std::mt19937_64 rd_64(0);
#else
std::mt19937 rg(std::chrono::steady_clock::now().time_since_epoch().count());
std::mt19937_64 rd_64(std::chrono::steady_clock::now().time_since_epoch().count());
#endif
uint rng() { return rg(); }
uint rng(uint lim) { return rg() % lim; }
int rng(int l, int r) { return l + rg() % (r - l); }
ull rng_64() { return rd_64(); }
ull rng_64(ull lim) { return rd_64() % lim; }
ll rng_64(ll l, ll r) { return l + rd_64() % (r - l); }
template <typename T>
void shuffle(vector<T> &v) {
const int N = len(v);
FOR(i, 1, N) {
int k = rng(0, i + 1);
if (i != k) swap(v[i], v[k]);
}
}
#line 5 "YRS/pr/factors.hpp"
ll find_pr_e(ll x) {
assert(x > 1);
if (primetest(x)) return x;
FOR(100) {
ll e = rho(x, rng_64(x));
if (primetest(e)) return e;
x = e;
}
err("failed");
assert(0);
return -1;
}
vc<pair<ll, int>> factor(ll x) {
assert(x >= 1);
vc<pair<ll, int>> r;
for (int e = 2; e < 100; ++e) {
if (e * e > x) break;
if (x % e == 0) {
int c = 0;
do {
x /= e, c += 1;
} while (x % e == 0);
r.ep(e, c);
}
}
while (x > 1) {
ll e = find_pr_e(x);
int c = 0;
do {
x /= e, c += 1;
} while (x % e == 0);
r.ep(e, c);
}
return sort(r), r;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int> &lpf) {
vc<pair<ll, int>> s;
while (n > 1) {
int p = lpf[n], e = 0;
while (n % p == 0) n /= p, ++e;
s.ep(p, e);
}
return s;
}
#line 2 "YRS/pr/lpf_table.hpp"
#line 2 "YRS/pr/primtable.hpp"
// [0, lm]
inline vc<int> primtable(int lm) {
++lm;
static constexpr int sz = 32768;
static int N = 2;
static vc<int> s{2}, vis(sz + 1);
if (N < lm) {
N = lm;
s = {2}, vis.assign(sz + 1, 0);
int R = lm / 2;
s.reserve(int(lm / log(lm) * 1.1));
vc<PII> cp;
FOR(i, 3, sz + 1, 2) {
if (not vis[i]) {
cp.ep(i, 1ll * i * i / 2);
FOR(j, 1ll * i * i, sz + 1, i << 1) vis[j] = 1;
}
}
FOR(L, 1, R + 1, sz) {
array<bool, sz> f{};
for (Z &[p, id] : cp)
for (int i = id; i < sz + L; id = (i += p)) f[i - L] = 1;
FOR(i, min(sz, R - L)) if (not f[i]) s.ep((L + i) << 1 | 1);
}
}
int k = lb(s, lm + 1);
return {s.begin(), s.begin() + k};
}
// [0, N]
inline vc<int> sie(int N) { return primtable(N); }
#line 4 "YRS/pr/lpf_table.hpp"
// 最大质因子
vc<int> lpf_table(int LIM) {
Z prim = primtable(LIM);
vc<int> minp(LIM + 1, -1);
FOR_R(i, len(prim)) {
Z p = prim[i];
FOR(k, 1, LIM / p + 1) minp[p * k] = p;
}
return minp;
}
#line 9 "No_28_\u672b\u5c3e\u6700\u9069\u5316.cpp"
#define tests 1
#define fl 0
#define DB 10
using mint = modint<1'000'000'09>;
Z lpf = lpf_table(100);
void Yorisou() {
INT(s, N, K, B);
vc<int> a(N);
a[0] = s;
FOR(i, 1, N) a[i] = (mint(a[i - 1]) * a[i - 1] + mint(a[i - 1]) * 12345 + 1).val;
Z fa = factor_by_lpf(B, lpf);
int sz = len(fa);
Z f = [&](vc<int> f) -> int {
vc<int> c(sz);
for (int x : f) FOR(i, sz) {
while (x % fa[i].fi == 0) ++c[i], x /= fa[i].fi;
}
int re = inf<int>;
FOR(i, sz) chmin(re, c[i] / fa[i].se);
return re;
};
Z fp = [&](int x, int e) {
int s = 0;
while (x % e == 0) ++s, x /= e;
return s;
};
int ans = inf<int>;
for (Z [e, p] : fa) {
sort(a, [&](mint x, mint y) -> bool {
return fp(x.val, e) < fp(y.val, e);
});
chmin(ans, f(vc<int>{begin(a), begin(a) + K}));
}
print(ans - 1);
}
#line 1 "YRS/aa/main.hpp"
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int T = 1;
if (fl) cerr.tie(0);
if (tests and not fl) IN(T);
for (int i = 0; i < T or fl; ++i) {
Yorisou();
if (fl and i % DB == 0) cerr << "Case: " << i << '\n';
}
return 0;
}
#line 46 "No_28_\u672b\u5c3e\u6700\u9069\u5316.cpp"