結果

問題 No.3446 Range Adjacent Differences
ユーザー 👑 ArcAki
提出日時 2026-02-18 21:03:36
言語 Rust
(1.93.0 + proconio + num + itertools)
結果
AC  
実行時間 1,179 ms / 2,200 ms
コード長 12,902 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 4,226 ms
コンパイル使用メモリ 237,716 KB
実行使用メモリ 20,096 KB
最終ジャッジ日時 2026-02-18 21:04:00
合計ジャッジ時間 19,937 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 26
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: comparison is useless due to type limits
   --> src/main.rs:347:31
    |
347 |     assert!(a.iter().all(|&v| 0 <= v && v < 10000000));
    |                               ^^^^^^
    |
    = note: `#[warn(unused_comparisons)]` on by default

warning: comparison is useless due to type limits
   --> src/main.rs:348:35
    |
348 |     assert!(query.iter().all(|&x| 0 <= x.0 && x.0+1 < x.1 && x.1 <= n && 1 <= x.2 && x.2 <= 10000000 && (x.3=='L'||x.3=='R')));
    |                                   ^^^^^^^^

ソースコード

diff #
raw source code

#[allow(unused_imports)]
use std::{
    convert::{Infallible, TryFrom, TryInto as _}, fmt::{self, Debug, Display, Formatter,},
    fs::File, hash::{Hash, Hasher, BuildHasherDefault}, iter::{Product, Sum}, marker::PhantomData,
    ops::{Add, AddAssign, Sub, SubAssign, Div, DivAssign, Mul, MulAssign, Neg, RangeBounds},
    str::FromStr, sync::{atomic::{self, AtomicU32, AtomicU64}, Once},
    collections::{*, btree_set::Range, btree_map::Range as BTreeRange}, mem::{swap},
    cmp::{self, Reverse, Ordering, Eq, PartialEq, PartialOrd},
    thread::LocalKey, f64::consts::PI, time::Instant, cell::RefCell,
    io::{self, stdin, Read, read_to_string, BufWriter, BufReader, stdout, Write},
};
pub mod fxhash {
    use std::hash::BuildHasherDefault;
    const K: u64 = 0x517c_c1b7_2722_0a95;
    #[derive(Default)]
    pub struct FxHasher {
        pub hash: u64,
    }
    impl FxHasher {
        #[inline(always)]
        fn mix_u64(mut h: u64, x: u64) -> u64 {
            h = h.rotate_left(5) ^ x;
            h = h.wrapping_mul(K);
            let x2 = x ^ (x >> 33) ^ (x << 11);
            h = h.rotate_left(5) ^ x2;
            h = h.wrapping_mul(K);
            h
        }

        #[inline(always)]
        fn write_u64_impl(&mut self, x: u64) {
            self.hash = Self::mix_u64(self.hash, x);
        }
    }

    impl std::hash::Hasher for FxHasher {
        #[inline(always)]
        fn finish(&self) -> u64 {
            self.hash
        }

        #[inline(always)]
        fn write(&mut self, bytes: &[u8]) {
            let mut h = self.hash;
            for &b in bytes {
                h = h.rotate_left(5) ^ (b as u64);
                h = h.wrapping_mul(K);
            }
            self.hash = h;
        }

        #[inline(always)]
        fn write_u64(&mut self, i: u64) { self.write_u64_impl(i); }
        #[inline(always)]
        fn write_u32(&mut self, i: u32) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_u16(&mut self, i: u16) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_u8 (&mut self, i: u8 ) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_usize(&mut self, i: usize) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_i64(&mut self, i: i64) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_i32(&mut self, i: i32) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_i16(&mut self, i: i16) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_i8 (&mut self, i: i8 ) { self.write_u64_impl(i as u64); }
        #[inline(always)]
        fn write_isize(&mut self, i: isize) { self.write_u64_impl(i as u64); }
    }

    pub type FxBuildHasher = BuildHasherDefault<FxHasher>;
    pub type FxMap<K, V> = std::collections::HashMap<K, V, FxBuildHasher>;
    pub type FxSet<K> = std::collections::HashSet<K, FxBuildHasher>;
}

pub fn gcd(mut a: i64, mut b: i64)->i64{if a==0{return b;}else if b==0{return a;}let l1 = a.trailing_zeros();let l2 = b.trailing_zeros();
a >>= l1; b >>= l2;while a!=b{let x = (a^b).trailing_zeros();if a<b{swap(&mut a, &mut b)}a = (a-b)>>x;}a << l1.min(l2)}
pub fn factorial_i64(n: usize)->(Vec<i64>, Vec<i64>){ 
    let mut res = vec![1; n+1];let mut inv = vec![1; n+1];for i in 0..n{ res[i+1] = (res[i]*(i+1)as i64)%MOD; }
    inv[n] = mod_inverse(res[n], MOD);for i in (0..n).rev(){ inv[i] = inv[i+1]*(i+1) as i64%MOD; }(res, inv) }
pub fn floor(a:i64, b:i64)->i64{let res=(a%b+b)%b;(a-res)/b}
pub fn modulo(a: i64, b: i64)->i64{(a%b+b)%b}
pub fn extended_gcd(a:i64,b:i64)->(i64,i64,i64)
{if b==0{(a,1,0)}else{let(g,x,y)=extended_gcd(b,a%b);(g,y,x-floor(a,b)*y)}}
pub fn mod_inverse(a:i64,m:i64)->i64{let(_,x,_) =extended_gcd(a,m);(x%m+m)%m}
pub fn comb(a: i64, b: i64, f: &Vec<(i64, i64)>)->i64{
    if a<b{return 0;}else if b==0 || a==b{ return 1; }
    else{let x=f[a as usize].0;
        let y=f[(a-b) as usize].1;let z=f[b as usize].1;return((x*y)%MOD)*z%MOD;}}
pub fn factorial(x: i64)->Vec<(i64, i64)>{
    let mut f=vec![(1i64,1i64),(1, 1)];let mut z = 1i64;
    let mut inv = vec![0; x as usize+10];inv[1] = 1;
    for i in 2..x+1{z=(z*i)%MOD;
        let w=(MOD-inv[(MOD%i)as usize]*(MOD/i)%MOD)%MOD;
        inv[i as usize] = w;
        f.push((z, (f[i as usize-1].1*w)%MOD));}return f;}
pub fn fast_mod_pow(mut x: i64,p: usize, m: i64)->i64{
    x %= m;
    let mut res=1;let mut t=x;let mut z=p;while z > 0{
        if z%2==1{res = (res*t)%m;}t = (t*t)%m;z /= 2; }res}

pub trait SortD{ fn sort_d(&mut self); }
impl<T: Ord> SortD for Vec<T>{ fn sort_d(&mut self) {self.sort_by(|u, v| v.cmp(&u));} }
pub trait Mx{fn max(&self, rhs: Self)->Self;}
impl Mx for f64{ fn max(&self, rhs: Self)->Self{if *self < rhs{ rhs } else { *self } }}
pub trait Mi{ fn min(&self, rhs: Self)->Self; }
impl Mi for f64{ fn min(&self, rhs: Self)->Self{ if *self > rhs{ rhs } else { *self } } }
pub trait Chmax: PartialOrd + Copy {fn chmax(&mut self, rhs: Self) {if *self < rhs { *self = rhs; }}}
impl<T: PartialOrd + Copy> Chmax for T {}
pub trait Chmin: PartialOrd + Copy {fn chmin(&mut self, rhs: Self) {if *self > rhs { *self = rhs; }}}
impl<T: PartialOrd + Copy> Chmin for T {}
#[allow(unused)]
use proconio::{*, marker::*};
#[allow(unused)]
use fxhash::FxMap;

#[allow(dead_code)]
const INF: i64 = 1<<60;
#[allow(dead_code)]
const I: i32 = 1<<30;
#[allow(dead_code)]
const MOD: i64 = 998244353;
#[allow(dead_code)]
const D: [(usize, usize); 4] = [(1, 0), (0, 1), (!0, 0), (0, !0)];
#[allow(dead_code)]
pub fn c2d(c: u8)->(usize, usize){match c{b'U'=>(!0,0),b'D'=>(1,0),b'L'=>(0,!0),b'R'=>(0,1),_=>unreachable!()}}
#[allow(dead_code)]
pub fn c2d_i64(c: u8)->(i64, i64){match c{b'U'=>(-1,0),b'D'=>(1,0),b'L'=>(0,-1),b'R'=>(0,1),_=>unreachable!()}}
#[allow(dead_code)]
const D2: [(usize, usize); 8] = [(1, 0), (1, 1), (0, 1), (!0, 1), (!0, 0), (!0, !0), (0, !0), (1, !0)];

#[derive(Clone, Debug)]
pub struct Predecessor64{
    n: usize,
    d: Vec<Vec<u64>>,
}

impl Predecessor64 {
    pub fn new(n: usize)->Self{
        let d = (0..n).into_iter().map(|k| vec![0; 1<<(6*(n-k-1))]).collect::<Vec<Vec<u64>>>();
        Predecessor64{
            n, d
        }
    }

    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.d[self.n-1][0]==0
    }

    #[inline(always)]
    pub fn include(&self, p: usize) -> bool {
        self.d[0][p>>6]&1<<(p&63)!=0
    }

    #[inline(always)]
    pub fn insert(&mut self, p: usize){
        for i in 0..self.n{
            if self.d[i][p>>(6*(i+1))]&1<<((p>>(6*i))&63)==0{
                self.d[i][p>>(6*(i+1))] |= 1<<((p>>(6*i))&63);
            } else {
                return;
            }
        }
    }

    #[inline(always)]
    pub fn remove(&mut self, p: usize){
        if self.d[0][p>>6]&1<<(p&63)==0{return;}
        for i in 0..self.n{
            self.d[i][p>>(6*(i+1))] ^= 1<<((p>>(6*i))&63);
            if self.d[i][p>>(6*(i+1))]!=0{
                return;
            } 
        }
    }

    #[inline(always)]
    fn ml(r: usize)->u64{
        (1<<r)-1
    }

    #[inline(always)]
    fn mr(l: usize)->u64{
        if l==63{return 0;}
        !((1<<(l+1))-1)
    }

    #[inline(always)]
    fn msb(bit: u64)->usize{
        63-bit.leading_zeros()as usize
    }

    #[inline(always)]
    fn lsb(bit: u64)->usize{
        bit.trailing_zeros()as usize
    }

    //存在しないは!0
    #[inline(always)]
    pub fn prev(&self, mut p: usize)->usize{
        for i in 0..self.n{
            if Self::ml(p&63)&self.d[i][p>>6]!=0{
                let mut res = ((p>>6)<<6)|Self::msb(self.d[i][p>>6]&Self::ml(p&63));
                for j in (0..i).rev(){
                    res = (res<<6)|Self::msb(self.d[j][res]);
                }
                return res;
            }
            p >>= 6;
        }
        !0
    }

    #[inline(always)]
    pub fn next(&self, mut p: usize)->usize{
        for i in 0..self.n{
            if Self::mr(p&63)&self.d[i][p>>6]!=0{
                let mut res = ((p>>6)<<6)|Self::lsb(self.d[i][p>>6]&Self::mr(p&63));
                for j in (0..i).rev(){
                    res = (res<<6)|Self::lsb(self.d[j][res]);
                }
                return res;
            }
            p >>= 6;
        }
        !0
    }

    #[inline(always)]
    pub fn inprev(&self, p: usize)->usize{
        if self.include(p){p}
        else {self.prev(p)}
    }

    #[inline(always)]
    pub fn innext(&self, p: usize)->usize{
        if self.include(p){p}
        else {self.next(p)}
    }

    #[inline(always)]
    pub fn min(&self)->usize{
        self.innext(0)
    }

    #[inline(always)]
    pub fn max(&self)->usize{
        self.inprev((1<<(6*self.n))-1)
    }
}

#[inline(always)]
fn inc(p: usize, c2: &mut Vec<i32>, seg: &mut Predecessor64){
    if c2[p]==0{
        seg.insert(p);
    } 
    c2[p] += 1;
}
#[inline(always)]
fn dec(p: usize, c2: &mut Vec<i32>, seg: &mut Predecessor64){
    c2[p] -= 1;
    if c2[p]==0{
        seg.remove(p);
    } 
}
#[inline(always)]
fn add(p: usize, b: &Vec<usize>, set: &mut Predecessor64, seg: &mut Predecessor64, c1: &mut Vec<i32>, c2: &mut Vec<i32>){
    if c1[p]==0{
        let l = set.prev(p);
        let r = set.next(p);
        let bp = b[p];
        if l==!0{
            if r!=!0{
                inc(b[r]-bp, c2, seg);
            }
        } else if r==!0{
            inc(bp-b[l], c2, seg);
        } else {
            let (bl, br) = (b[l], b[r]);
            dec(br-bl, c2, seg);
            inc(bp-bl, c2, seg);
            inc(br-bp, c2, seg);
        }
        set.insert(p);
    } else {
        inc(0, c2, seg);
    }
    c1[p] += 1;
}
#[inline(always)]
fn sub(p: usize, b: &Vec<usize>,set: &mut Predecessor64, seg: &mut Predecessor64, c1: &mut Vec<i32>, c2: &mut Vec<i32>){
    c1[p] -= 1;
    if c1[p]==0{
        let l = set.prev(p);
        let r = set.next(p);
        let bp = b[p];
        if l==!0{
            if r!=!0{
                dec(b[r]-bp, c2, seg);
            }
        } else if r==!0{
            dec(bp-b[l], c2, seg);
        } else {
            let (bl, br) = (b[l], b[r]);
            inc(br-bl, c2, seg);
            dec(bp-bl, c2, seg);
            dec(br-bp, c2, seg);
        }
        set.remove(p);
    } else {
        dec(0, c2, seg);
    }
}

const ROT_DELTA: [u32; 4] = [3, 0, 0, 1];
#[inline]
pub fn hilbert_order(x: u32, y: u32, pow: u32, rot: u32) -> u64 {
    if pow == 0 { return 0; }
    let h: u32 = 1u32 << (pow - 1);
    let mut seg: u32 = if x < h {if y < h { 0 } else { 3 }} else {if y < h { 1 } else { 2 }};
    seg = (seg + rot) & 3;
    let nrot = (rot + ROT_DELTA[seg as usize]) & 3;
    let nx = x & (h - 1);
    let ny = y & (h - 1);
    let sub: u64 = 1u64 << (2 * pow - 2);
    let mut ord = (seg as u64) * sub;
    let add = hilbert_order(nx, ny, pow - 1, nrot);
    ord += if seg == 1 || seg == 2 { add } else { sub - 1 - add };
    ord
}


const MULTI: bool = false;
#[fastout]
fn solve(){
    input!{
        n: usize, q: usize,
        a: [Usize1; n],
        query: [(Usize1, usize, usize, char); q],
    }
    assert!(2 <= n && n <= 100000);
    assert!(1 <= q && q <= 100000);
    assert!(a.iter().all(|&v| 0 <= v && v < 10000000));
    assert!(query.iter().all(|&x| 0 <= x.0 && x.0+1 < x.1 && x.1 <= n && 1 <= x.2 && x.2 <= 10000000 && (x.3=='L'||x.3=='R')));
    let mut b = a.clone();
    b.sort_unstable();b.dedup();
    let mut map = FxMap::default();
    for (i,&v)in b.iter().enumerate(){
        map.insert(v, i);
    }
    let c = a.iter().map(|&x| map[&x]).collect::<Vec<_>>();
    let mut set = Predecessor64::new(3);
    let mut seg = Predecessor64::new(4);
    let ord_x = (0..q).into_iter().map(|idx| hilbert_order(query[idx].0 as u32, query[idx].1 as u32, 19, 0)).collect::<Vec<_>>();
    const MX: usize = 10000000;
    let mut ord = (0..q).collect::<Vec<_>>();
    let mut c1 = vec![0; b.len()];
    let mut c2 = vec![0; MX];
    let mut ans = vec![0; q];
    ord.sort_unstable_by_key(|&idx| ord_x[idx]);
    let (mut l, mut r) = (0, 0);
    for idx in ord{
        let (left, right, x, ci) = query[idx];
        while r < right{
            add(c[r], &b, &mut set, &mut seg, &mut c1, &mut c2);
            r += 1;
        }
        while l > left{
            l -= 1;
            add(c[l], &b, &mut set, &mut seg, &mut c1, &mut c2);
        }
        while r > right{
            r -= 1;
            sub(c[r], &b, &mut set, &mut seg, &mut c1, &mut c2);
        }
        while l < left {
            sub(c[l], &b, &mut set, &mut seg, &mut c1, &mut c2);
            l += 1;
        }
        ans[idx] = if ci=='L'{seg.inprev(x)} else {seg.innext(x)}as i32;
    }
    for x in ans{
        println!("{}", x);
    }
}

fn main() {
    if MULTI{
        input!{
            t: usize,
        }
        for _ in 0..t{
            solve();
        }
    } else {
        solve();
    }
}
0