結果

問題 No.3450 Permutation of Even Scores
コンテスト
ユーザー Misuki
提出日時 2026-02-20 23:07:39
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 1,039 ms / 2,000 ms
コード長 13,143 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 2,998 ms
コンパイル使用メモリ 293,972 KB
実行使用メモリ 19,668 KB
最終ジャッジ日時 2026-02-20 23:08:32
合計ジャッジ時間 40,569 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
#include <bit>
#include <compare>
#include <concepts>
#include <numbers>
#include <ranges>
#include <span>

#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define pb push_back
#define eb emplace_back
#define clock chrono::steady_clock::now().time_since_epoch().count()

using namespace std;

template<size_t I = 0, typename... args>
ostream& print_tuple(ostream& os, const tuple<args...> tu) {
  os << get<I>(tu);
  if constexpr (I + 1 != sizeof...(args)) {
    os << ' ';
    print_tuple<I + 1>(os, tu);
  }
  return os;
}
template<typename... args>
ostream& operator<<(ostream& os, const tuple<args...> tu) {
  return print_tuple(os, tu);
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(size_t i = 0; T x : arr) {
    os << x;
    if (++i != N) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(size_t i = 0; T x : vec) {
    os << x;
    if (++i != size(vec)) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(size_t i = 0; T x : s) {
    os << x;
    if (++i != size(s)) os << ' ';
  }
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const multiset<T> &s) {
  for(size_t i = 0; T x : s) {
    os << x;
    if (++i != size(s)) os << ' ';
  }
  return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const map<T1, T2> &m) {
  for(size_t i = 0; pair<T1, T2> x : m) {
    os << x.first << " : " << x.second;
    if (++i != size(m)) os << ", ";
  }
  return os;
}

#ifdef DEBUG
#define dbg(...) cerr << '(', _do(#__VA_ARGS__), cerr << ") = ", _do2(__VA_ARGS__)
template<typename T> void _do(T &&x) { cerr << x; }
template<typename T, typename ...S> void _do(T &&x, S&&...y) { cerr << x << ", "; _do(y...); }
template<typename T> void _do2(T &&x) { cerr << x << endl; }
template<typename T, typename ...S> void _do2(T &&x, S&&...y) { cerr << x << ", "; _do2(y...); }
#else
#define dbg(...)
#endif

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb

template<typename T> using vc = vector<T>;
template<typename T> using vvc = vc<vc<T>>;
template<typename T> using vvvc = vc<vvc<T>>;

using vi = vc<int>;
using vll = vc<ll>;
using vvi = vvc<int>;
using vvll = vvc<ll>;

template<typename T> using min_heap = priority_queue<T, vc<T>, greater<T>>;
template<typename T> using max_heap = priority_queue<T>;

template<typename R, typename F, typename... Args>
concept R_invocable = requires(F&& f, Args&&... args) {
  { std::invoke(std::forward<F>(f), std::forward<Args>(args)...) } -> std::same_as<R>;
};
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>, typename F>
requires R_invocable<T, F, T, T>
void pSum(rng &&v, F f) {
  if (!v.empty())
    for(T p = *v.begin(); T &x : v | views::drop(1))
      x = p = f(p, x);
}
template<ranges::forward_range rng, class T = ranges::range_value_t<rng>>
void pSum(rng &&v) {
  if (!v.empty())
    for(T p = *v.begin(); T &x : v | views::drop(1))
      x = p = p + x;
}

template<ranges::forward_range rng>
void Unique(rng &v) {
  ranges::sort(v);
  v.resize(unique(v.begin(), v.end()) - v.begin());
}

template<ranges::random_access_range rng>
rng invPerm(rng p) {
  rng ret = p;
  for(int i = 0; i < ssize(p); i++)
    ret[p[i]] = i;
  return ret;
}

template<ranges::random_access_range rng>
vi argSort(rng p) {
  vi id(size(p));
  iota(id.begin(), id.end(), 0);
  ranges::sort(id, {}, [&](int i) { return pair(p[i], i); });
  return id;
}

template<ranges::random_access_range rng, class T = ranges::range_value_t<rng>, typename F>
requires invocable<F, T&>
vi argSort(rng p, F proj) {
  vi id(size(p));
  iota(id.begin(), id.end(), 0);
  ranges::sort(id, {}, [&](int i) { return pair(proj(p[i]), i); });
  return id;
}

template<bool directed>
vvi read_graph(int n, int m, int base) {
  vvi g(n);
  for(int i = 0; i < m; i++) {
    int u, v; cin >> u >> v;
    u -= base, v -= base;
    g[u].emplace_back(v);
    if constexpr (!directed)
      g[v].emplace_back(u);
  }
  return g;
}

template<bool directed>
vvi adjacency_list(int n, vc<pii> e, int base) {
  vvi g(n);
  for(auto [u, v] : e) {
    u -= base, v -= base;
    g[u].emplace_back(v);
    if constexpr (!directed)
      g[v].emplace_back(u);
  }
  return g;
}

template<class T>
vc<pii> equal_subarrays(vc<T> &v) {
  vc<pii> lr;
  for(int i = 0, j = 0; i < ssize(v); i = j) {
    while(j < ssize(v) and v[i] == v[j]) j++;
    lr.eb(i, j);
  }
  return lr;
}

template<class T, typename F>
requires invocable<F, T&>
vc<pii> equal_subarrays(vc<T> &v, F proj) {
  vc<pii> lr;
  for(int i = 0, j = 0; i < ssize(v); i = j) {
    while(j < ssize(v) and proj(v[i]) == proj(v[j])) j++;
    lr.eb(i, j);
  }
  return lr;
}

template<class T>
void setBit(T &msk, int bit, bool x) { (msk &= ~(T(1) << bit)) |= T(x) << bit; }
template<class T> void onBit(T &msk, int bit) { setBit(msk, bit, true); }
template<class T> void offBit(T &msk, int bit) { setBit(msk, bit, false); }
template<class T> void flipBit(T &msk, int bit) { msk ^= T(1) << bit; }
template<class T> bool getBit(T msk, int bit) { return msk >> bit & T(1); }

template<class T>
T floorDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? a / b : (a - b + 1) / b;
}
template<class T>
T ceilDiv(T a, T b) {
  if (b < 0) a *= -1, b *= -1;
  return a >= 0 ? (a + b - 1) / b : a / b;
}

template<class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }

//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be an odd prime less than 2^30.

template<uint32_t mod>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
  static constexpr u32 r = get_r(); //-P^{-1} % 2^32

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint c, mint d) { return c += d; }
  friend mint operator-(mint c, mint d) { return c -= d; }
  friend mint operator*(mint c, mint d) { return c *= d; }
  friend mint operator/(mint c, mint d) { return c /= d; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

//using mint = MontgomeryModInt<1'000'000'007>;
using mint = MontgomeryModInt<998'244'353>;

//reference: https://judge.yosupo.jp/submission/69896
//remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD
//remark: a.size() <= 2^K must be satisfied
//some common modulo: 998244353  = 2^23 * 119 + 1, R = 3
//                    469762049  = 2^26 * 7   + 1, R = 3
//                    1224736769 = 2^24 * 73  + 1, R = 3

template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>>
struct NTT {

  using u32 = uint32_t;
  static constexpr u32 mod = (1 << k) * c + 1;
  static constexpr u32 get_mod() { return mod; }

  static void ntt(vector<Mint> &a, bool inverse) {
    static array<Mint, 30> w, w_inv;
    if (w[0] == 0) {
      Mint root = 2;
      while(root.pow((mod - 1) / 2) == 1) root += 1;
      for(int i = 0; i < 30; i++)
        w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i];
    }
    int n = ssize(a);
    if (not inverse) {
      for(int m = n; m >>= 1; ) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j] * ww;
            a[i] = x + y, a[j] = x - y;
          }
          ww *= w[__builtin_ctz(++l)];
        }
      }
    } else {
      for(int m = 1; m < n; m *= 2) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j];
            a[i] = x + y, a[j] = (x - y) * ww;
          }
          ww *= w_inv[__builtin_ctz(++l)];
        }
      }
      Mint inv = 1 / Mint(n);
      for(Mint &x : a) x *= inv;
    }
  }

  static vector<Mint> conv(vector<Mint> a, vector<Mint> b) {
    int sz = ssize(a) + ssize(b) - 1;
    int n = bit_ceil((u32)sz);

    a.resize(n, 0);
    ntt(a, false);
    b.resize(n, 0);
    ntt(b, false);

    for(int i = 0; i < n; i++)
      a[i] *= b[i];

    ntt(a, true);

    a.resize(sz);

    return a;
  }
};

NTT ntt;
//#include<modint/MontgomeryModInt.cpp>

template<class Mint>
struct binomial {
  vector<Mint> _fac, _facInv;
  binomial(int size) : _fac(size), _facInv(size) {
    assert(size <= (int)Mint::get_mod());
    _fac[0] = 1;
    for(int i = 1; i < size; i++)
      _fac[i] = _fac[i - 1] * i;
    if (size > 0)
      _facInv.back() = 1 / _fac.back();
    for(int i = size - 2; i >= 0; i--)
      _facInv[i] = _facInv[i + 1] * (i + 1);
  }

  Mint fac(int i) { return i < 0 ? 0 : _fac[i]; }
  Mint faci(int i) { return i < 0 ? 0 : _facInv[i]; }
  Mint inv(int i) { return _facInv[i] * _fac[i - 1]; }
  Mint binom(int n, int r) { return r < 0 or n < r ? 0 : fac(n) * faci(r) * faci(n - r); }
  Mint catalan(int i) { return binom(2 * i, i) - binom(2 * i, i + 1); }
  Mint excatalan(int n, int m, int k) { //(+1) * n, (-1) * m, prefix sum > -k
    if (k > m) return binom(n + m, m);
    else if (k > m - n) return binom(n + m, m) - binom(n + m, m - k);
    else return Mint(0);
  }
};

binomial<mint> bn(1 << 20);

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int n, m; cin >> n >> m;
  vc<bool> in_a(n + 1, false);
  while(m--) {
    int x; cin >> x;
    in_a[x] = true;
  }

  vc<mint> G(n + 1);
  for(int i = 1; i <= n; i++)
    G[i] = (i + 1) * bn.fac(i);
  dbg(G);

  mint ans = 0;
  for(int c : {-2, 0}) {
    vc<mint> F(n + 1);

    auto dc = [&](int l, int r, auto &self) -> void {
      if (l + 1 == r) {
        if (!in_a[l]) F[l] = 0;
        else F[l] += bn.fac(l), F[l] *= c;
        return;
      }
      int mid = (l + r) / 2;
      self(l, mid, self);
      {
        vc<mint> F2(F.begin() + l, F.begin() + mid);
        vc<mint> G2(G.begin(), G.begin() + min(r - l, (int)G.size()));
        auto H = ntt.conv(F2, G2);
        for(int i = mid - l; i < ssize(H) and i + l < r; i++)
          F[i + l] += H[i];
      }
      self(mid, r, self);
    };

    dc(0, n + 1, dc);

    dbg(c, F);

    ans += bn.fac(n);
    for(int i = 1; i <= n; i++)
      ans += F[i] * (n - i + 1) * bn.fac(n - i);
  }

  cout << ans / 2 << '\n';

  return 0;
}
0