結果

問題 No.3450 Permutation of Even Scores
コンテスト
ユーザー 37zigen
提出日時 2026-02-21 01:32:19
言語 Java
(openjdk 25.0.2)
結果
AC  
実行時間 1,766 ms / 2,000 ms
コード長 19,768 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,719 ms
コンパイル使用メモリ 103,500 KB
実行使用メモリ 87,940 KB
最終ジャッジ日時 2026-02-21 01:33:26
合計ジャッジ時間 64,239 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.nio.file.Files;
import java.nio.file.OpenOption;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map.Entry;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Optional;
import java.util.Queue;
import java.util.Random;
import java.util.Set;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntFunction;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.LongBinaryOperator;
import java.util.function.LongToDoubleFunction;
import java.util.function.Predicate;
import java.util.function.Supplier;
import java.util.function.ToIntFunction;
import java.util.random.RandomGenerator;
import java.util.stream.IntStream;
import java.util.stream.Stream;

class FastScanner {
    private static FastScanner instance = null;

    private final InputStream in = System.in;

    private final byte[] buffer = new byte[1024];

    private int ptr = 0;

    private int buflen = 0;

    private FastScanner() {
    }

    public static FastScanner getInstance() {
        if (instance == null) {
            instance = new FastScanner();
        }
        return instance;
    }

    private boolean hasNextByte() {
        if (ptr < buflen) {
            return true;
        }
        ptr = 0;
        try {
            buflen = in.read(buffer);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return buflen > 0;
    }

    private int readByte() {
        if (hasNextByte()) {
            return buffer[ptr++];
        } else {
            return -1;
        }
    }

    private boolean isPrintableChar(int c) {
        return (33 <= c) && (c <= 126);
    }

    public boolean hasNext() {
        while (hasNextByte() && (!isPrintableChar(buffer[ptr]))) {
            ptr++;
        } 
        return hasNextByte();
    }

    public long nextLong() {
        if (!hasNext()) {
            throw new NoSuchElementException();
        }
        long n = 0;
        boolean minus = false;
        int b = readByte();
        if (b == '-') {
            minus = true;
            b = readByte();
        }
        while ((b >= '0') && (b <= '9')) {
            // n = n * 10 + (b - '0');
            n = ((n << 1) + (n << 3)) + (b - '0');
            b = readByte();
        } 
        return minus ? -n : n;
    }

    public int nextInt() {
        return ((int) (nextLong()));
    }

    public int[] nextInts(int n) {
        int[] a = new int[n];
        for (int i = 0; i < n; ++i) {
            a[i] = nextInt();
        }
        return a;
    }
}

class MergeFiles {}

class PolynomialFp {
    public static final long mod = 998244353;// 119×2^{23}+1


    static long[][] bitreversedRoots = new long[30][];

    static long[][] bitreversedInvRoots = new long[30][];

    static long ADD(long a, long b) {
        long sum = a + b;
        return sum >= mod ? sum - mod : sum;
    }

    static long SUB(long a, long b) {
        return ADD(a, mod - b);
    }

    static void prepareRoots(int n) {
        int sz = Integer.numberOfTrailingZeros(n);
        if (bitreversedRoots[sz] != null) {
            return;
        }
        long g = 3;
        long root = MathUtils.modPow(g, (mod - 1) / n, mod);
        long iroot = MathUtils.modInv(root, mod);
        bitreversedRoots[sz] = new long[n];
        bitreversedInvRoots[sz] = new long[n];
        for (int n_ = n / 2; n_ >= 1; n_ /= 2 , root = (root * root) % mod , iroot = (iroot * iroot) % mod) {
            long w = 1;
            long iw = 1;
            for (int j = 0; j < n_; ++j) {
                bitreversedRoots[sz][n_ + j] = w;
                bitreversedInvRoots[sz][n_ + j] = iw;
                w = (w * root) % mod;
                iw = (iw * iroot) % mod;
            }
            int cur = 0;
            for (int j = 0; j < n_; ++j) {
                if (cur < j) {
                    ArrayUtils.swap(n_ + cur, n_ + j, bitreversedRoots[sz]);
                    ArrayUtils.swap(n_ + cur, n_ + j, bitreversedInvRoots[sz]);
                }
                for (int k = n_ / 2; k > (cur ^= k); k /= 2);
            }
        }
    }

    /**
     * fftをbitreversedした順で返す。
     * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017.
     *
     * @param a
     */
    public static void fftTobitReversed(long[] a) {
        int n = a.length;
        int sz = Integer.numberOfTrailingZeros(a.length);
        if (bitreversedRoots[sz] == null) {
            prepareRoots(a.length);
        }
        for (int m = 1, t = n / 2; m <= (n / 2); m *= 2 , t /= 2) {
            for (int i = 0, k = 0; i < m; ++i , k += 2 * t) {
                long S = bitreversedRoots[sz][m + i];
                for (int j = k; j < (k + t); ++j) {
                    long u = a[j];
                    long v = (a[j + t] * S) % mod;
                    a[j] = ADD(u, v);
                    a[j + t] = SUB(u, v);
                }
            }
        }
    }

    /**
     * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017.
     *
     * @param a
     */
    public static void ifftFromBitreversed(long[] a) {
        long invN = MathUtils.modInv(a.length, mod);
        int n = a.length;
        int sz = Integer.numberOfTrailingZeros(n);
        if (bitreversedInvRoots[sz] == null) {
            prepareRoots(a.length);
        }
        for (int m = n / 2, t = 1; m >= 1; m /= 2 , t *= 2) {
            for (int i = 0, k = 0; i < m; ++i , k += 2 * t) {
                long S = bitreversedInvRoots[sz][m + i];
                if (m == 1) {
                    S = (S * invN) % mod;
                }
                for (int j = k; j < (k + t); ++j) {
                    long u = a[j];
                    long v = a[j + t];
                    if (m == 1) {
                        a[j] = ((u + v) * invN) % mod;
                    } else {
                        a[j] = ADD(u, v);
                    }
                    a[j + t] = (((u + mod) - v) * S) % mod;
                }
            }
        }
    }

    static long[] mulFFT(long[] a, long[] b) {
        int n = 1;
        int len = (a.length + b.length) - 1;
        while (n < ((a.length + b.length) - 1)) {
            n *= 2;
        } 
        a = Arrays.copyOf(a, n);
        b = Arrays.copyOf(b, n);
        prepareRoots(n);
        fftTobitReversed(a);
        fftTobitReversed(b);
        for (int i = 0; i < a.length; ++i) {
            a[i] = (a[i] * b[i]) % mod;
        }
        ifftFromBitreversed(a);
        return resize(a, len);
    }

    public static long[] mulNaive(long[] a, long[] b) {
        long[] ret = new long[(a.length + b.length) - 1];
        for (int i = 0; i < a.length; ++i) {
            for (int j = 0; j < b.length; ++j) {
                ret[i + j] += a[i] * b[j];
                ret[i + j] %= mod;
            }
        }
        return ret;
    }

    /**
     * [-mod+1, mod-1]の範囲外の要素があると、ADD/SUBでバグる。
     *
     * @param a
     * @param b
     * @return  */
    public static long[] mul(long[] a, long[] b) {
        for (int i = 0; i < a.length; i++) {
            if (a[i] < 0) {
                a[i] += mod;
            }
        }
        for (int i = 0; i < b.length; i++) {
            if (b[i] < 0) {
                b[i] += mod;
            }
        }
        if ((((a.length + b.length) - 1) <= 512) || (Math.min(a.length, b.length) <= 10)) {
            return mulNaive(a, b);
        } else {
            return mulFFT(a, b);
        }
    }

    static long[] resize(long[] a, int len) {
        return Arrays.copyOf(a, len);
    }
}

class RelaxedConvolution {
    private int n;

    private final int m;

    private final long[] f;

    private final long[] g;

    private final long[] h;

    RelaxedConvolution(int m) {
        this.m = m;
        this.f = new long[m];
        this.g = new long[m];
        this.h = new long[m];
    }

    static final long mod = 998244353;

    private void calc(int l1, int r1, int l2, int r2) {
        long[] c = PolynomialFp.mul(Arrays.copyOfRange(f, l1, r1), Arrays.copyOfRange(g, l2, r2));
        for (int i = 0; (i < c.length) && (((i + l1) + l2) < m); i++) {
            h[(i + l1) + l2] = (h[(i + l1) + l2] + c[i]) % mod;
        }
    }

    public long add(long a, long b) {
        f[n] = a;
        g[n] = b;
        n++;
        int x = (n + 1) & (-(n + 1));
        int s = 0;
        if (x <= n) {
            for (int i = 1; i <= x; i <<= 1) {
                calc(n - i, n, s, s + i);
                calc(s, s + i, n - i, n);
                s += i;
            }
        } else {
            int i = 1;
            for (; i < (x / 2); i <<= 1) {
                calc(n - i, n, s, s + i);
                calc(s, s + i, n - i, n);
                s += i;
            }
            calc(n - i, n, s, s + i);
        }
        return h[n - 1];
    }
}

class ArrayUtils {
    public static void swap(int i, int j, long[] A) {
        if (i == j) {
            return;
        }
        long tmp = A[i];
        A[i] = A[j];
        A[j] = tmp;
    }

    public static void swap(long[] A, long[] B) {
        if (A.length != B.length) {
            throw new AssertionError();
        }
        for (int i = 0; i < A.length; i++) {
            long tmp = A[i];
            A[i] = B[i];
            B[i] = tmp;
        }
    }
}

class MyPrintWriter extends PrintWriter {
    private static MyPrintWriter instance = null;

    private MyPrintWriter() {
        super(System.out);
    }

    public static MyPrintWriter getInstance() {
        if (instance == null) {
            instance = new MyPrintWriter();
        }
        return instance;
    }

    public void println(boolean[][] a) {
        for (int i = 0; i < a.length; i++) {
            println(a[i], " ");
        }
    }

    public void println(boolean[] a, String separator) {
        for (int i = 0; i < a.length; ++i) {
            super.print((a[i] ? 1 : 0) + (i == (a.length - 1) ? "\n" : separator));
        }
    }
}

class Fp {
    final long mod;

    long[] fac = new long[0];

    long[] ifac = new long[0];

    long[] inv = new long[0];

    public Fp(long mod) {
        this.mod = mod;
    }

    public void expand(int n) {
        fac = new long[n];
        ifac = new long[n];
        inv = new long[n];
        Arrays.fill(fac, 1);
        Arrays.fill(ifac, 1);
        Arrays.fill(inv, 1);
        for (int i = 2; i < n; ++i) {
            fac[i] = (i * fac[i - 1]) % mod;
            inv[i] = mod - (((mod / i) * inv[((int) (mod % i))]) % mod);
            ifac[i] = (inv[i] * ifac[i - 1]) % mod;
        }
    }

    public long fac(int n) {
        if (fac.length <= n) {
            expand(Math.max(2 * fac.length, n + 1));
        }
        return fac[n];
    }

    public long inv(long n) {
        if (n < 0) {
            n = reduce(n);
        }
        return n < inv.length ? inv[((int) (n))] : MathUtils.modInv(n, mod);
    }

    /**
     * *
     * 剰余を取り、0以上mod未満の値を返す。
     *
     * @param a
     * @return  */
    public long reduce(long a) {
        a %= mod;
        if (a < 0) {
            a += mod;
        }
        return a;
    }
}

class MathUtils {
    public static long modPow(long a, long n, long mod) {
        if (n < 0) {
            long inv = MathUtils.modInv(a, mod);
            return MathUtils.modPow(inv, -n, mod);
        }
        if (n == 0) {
            return 1;
        }
        return (MathUtils.modPow((a * a) % mod, n / 2, mod) * ((n % 2) == 1 ? a : 1)) % mod;
    }

    /**
     * 拡張ユークリッドの互除法で逆元を求める。
     *
     * @param a
     * @param mod
     * @return  */
    public static long modInv(long a, long mod) {
        a = ((a % mod) + mod) % mod;
        long[] f0 = new long[]{ 1, 0, mod };
        long[] f1 = new long[]{ 0, 1, a };
        while (f1[2] != 0) {
            long q = f0[2] / f1[2];
            for (int i = 0; i < 3; i++) {
                f0[i] -= q * f1[i];
            }
            ArrayUtils.swap(f0, f1);
        } 
        return f0[1] < 0 ? mod + f0[1] : f0[1];
    }
}

public class Main implements Runnable {
    public static void main(String[] args) throws IOException {
        Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1));
        // Runtime runtime = Runtime.getRuntime();
        // new Thread(null, new Main(), "MainThreadWithLargeStack", (1024 * 1024) * 1024).start();
        // new Main().test();
        // new Main().gen();
        new Main().run();
        // long usedMemory = runtime.totalMemory() - runtime.freeMemory();
        // System.err.printf("使用メモリ: %.2f MB%n", usedMemory / 1024.0 / 1024.0);
        MyPrintWriter.getInstance().flush();
    }

    @Override
    public void run() {
        Random rnd = new Random();
        FastScanner sc = FastScanner.getInstance();
        MyPrintWriter pw = MyPrintWriter.getInstance();
        long mod = 998244353;
        Fp fp = new Fp(mod);
        int N = sc.nextInt();
        int M = sc.nextInt();
        int[] A = sc.nextInts(M);
        Arrays.sort(A);
        long[] dp2 = new long[N + 1];
        dp2[0] = 1;
        boolean[] contains = new boolean[N + 1];
        for (int a : A) {
            contains[a] = true;
        }
        // for (int i = 0; i < A.length; i++) {
        // for (int j = 0; j < A[i]; j++) {
        // dp2[A[i]]+=dp2[j]*fp.fac(A[i]-Math.max(j-1, 0))%mod*2%mod*(mod-1)%mod;
        // dp2[A[i]]%=mod;
        // }
        // }
        long[] dp = new long[N + 1];
        dp[0] = 1;
        RelaxedConvolution cnv = new RelaxedConvolution(N + 10);
        cnv.add(0, fp.reduce((-2) * 2));
        for (int i = 1; i < contains.length; i++) {
            long v = cnv.add(i == 1 ? 0 : dp[i - 1], fp.reduce((-2) * fp.fac(i + 2)));
            if (!contains[i]) {
                continue;
            }
            // j = 0 の
            // dp[i] += dp[0] * fp.fac(i)(-2)
            // を別処理
            v += (fp.fac(i) % mod) * (-2);
            v = fp.reduce(v);
            dp[i] = v;
        }
        long all = fp.fac(N);
        long alt = 0;
        for (int i = 0; i < dp.length; i++) {
            alt += (dp[i] * fp.fac(N - Math.max(i - 1, 0))) % mod;
            alt %= mod;
        }
        long even = (((alt + all) % mod) * fp.inv(2)) % mod;
        pw.println(even);
    }
}


// --- Original Code ---
// package template;
// 
// import java.io.IOException;
// import java.util.Arrays;
// import java.util.Random;
// 
// import lib.tools.FastScanner;
// import lib.tools.MergeFiles;
// import lib.tools.MyPrintWriter;
// import lib.util.Fp;
// import lib.util.polynomial.PolynomialFp;
// 
// public class Main implements Runnable {
// 
// 	public static void main(String[] args) throws IOException {
// //		Runtime runtime = Runtime.getRuntime();
// //		new Thread(null, new Main(), "MainThreadWithLargeStack", (1024 * 1024) * 1024).start();
// //		new Main().test();
// //        new Main().gen();
// 		new Main().run();
// //        long usedMemory = runtime.totalMemory() - runtime.freeMemory();
// //        System.err.printf("使用メモリ: %.2f MB%n", usedMemory / 1024.0 / 1024.0);
// 		MyPrintWriter.getInstance().flush();
// 		MergeFiles.export();
// 	}
// 
// 	@Override
// 	public void run() {
// 		Random rnd = new Random();
// 		FastScanner sc = FastScanner.getInstance();
// 		MyPrintWriter pw = MyPrintWriter.getInstance();
// 		long mod=998244353;
// 		Fp fp=new Fp(mod);
// 		int N=sc.nextInt();
// 		int M=sc.nextInt();
// 		int[]A=sc.nextInts(M);
// 		Arrays.sort(A);
// 		long[]dp2=new long[N+1];
// 		dp2[0]=1;
// 		boolean[]contains=new boolean[N+1];
// 		for (int a : A) contains[a] = true;
// //		for (int i = 0; i < A.length; i++) {
// //			for (int j = 0; j < A[i]; j++) {
// //				dp2[A[i]]+=dp2[j]*fp.fac(A[i]-Math.max(j-1, 0))%mod*2%mod*(mod-1)%mod;
// //				dp2[A[i]]%=mod;
// //			}
// //		}
// 			
// 		long[]dp=new long[N+1];
// 		dp[0]=1;
// 		RelaxedConvolution cnv=new RelaxedConvolution(N+10);
// 		cnv.add(0, fp.reduce(-2*2));
// 		for (int i = 1; i < contains.length; i++) {
// 			long v=cnv.add(i==1?0:dp[i - 1], fp.reduce(-2*fp.fac(i+2)));
// 			if (!contains[i]) continue; 
// 			// j = 0 の
// 			// dp[i] += dp[0] * fp.fac(i)(-2)
// 			// を別処理
// 			v += fp.fac(i) % mod * (-2);
// 			v = fp.reduce(v);
// 			dp[i] = v;
// 		}
// 		long all=fp.fac(N);
// 		long alt=0;
// 		for (int i = 0; i < dp.length; i++) {
// 			alt+=dp[i]*fp.fac(N-Math.max(i-1, 0))%mod;
// 			alt%=mod;
// 		}
// 		long even=(alt+all)%mod*fp.inv(2)%mod;
// 		pw.println(even);
// 	
// 	}
// 	
// 	
// 	
// 	
// 	
// 
// 	void gen() {
// 		Random rnd = new Random();
// 		MyPrintWriter pw = MyPrintWriter.getInstance();
// 	}
// 
// 	void test() {
// 		Random rnd = new Random();
// 		for (int TEST = 0; TEST < 10000; TEST++) {
// 		}
// 	}
// 
// 	void abc() {
// 		Random rnd = new Random();
// 		int a = rnd.nextInt(212, 445);
// 		System.out.println(a);
// 	}
// 
// 	void tr(Object... objects) {
// 		System.out.println(Arrays.deepToString(objects));
// 	}
// 	
// 	
// 	
// 
// }
// 
// 
// 
// class RelaxedConvolution {
//     private int n;
// 
//     private final int m;
// 
//     private final long[] f;
// 
//     private final long[] g;
// 
//     private final long[] h;
// 
//     RelaxedConvolution(int m) {
//         this.m = m;
//         this.f = new long[m];
//         this.g = new long[m];
//         this.h = new long[m];
//     }
// 
//     static final long mod = 998244353;
// 
//     private void calc(int l1, int r1, int l2, int r2) {
//         long[] c = PolynomialFp.mul(Arrays.copyOfRange(f, l1, r1), Arrays.copyOfRange(g, l2, r2));
//         for (int i = 0; (i < c.length) && (((i + l1) + l2) < m); i++) {
//             h[(i + l1) + l2] = (h[(i + l1) + l2] + c[i]) % mod;
//         }
//     }
// 
//     public long add(long a, long b) {
//         f[n] = a;
//         g[n] = b;
//         n++;
//         int x = (n + 1) & (-(n + 1));
//         int s = 0;
//         if (x <= n) {
//             for (int i = 1; i <= x; i <<= 1) {
//                 calc(n - i, n, s, s + i);
//                 calc(s, s + i, n - i, n);
//                 s += i;
//             }
//         } else {
//             int i = 1;
//             for (; i < (x / 2); i <<= 1) {
//                 calc(n - i, n, s, s + i);
//                 calc(s, s + i, n - i, n);
//                 s += i;
//             }
//             calc(n - i, n, s, s + i);
//         }
//         return h[n - 1];
//     }
// }
// 
0