結果
問題 | No.421 しろくろチョコレート |
ユーザー | koba-e964 |
提出日時 | 2016-09-10 00:27:18 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 6 ms / 2,000 ms |
コード長 | 4,256 bytes |
コンパイル時間 | 1,118 ms |
コンパイル使用メモリ | 107,136 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-23 07:07:48 |
合計ジャッジ時間 | 2,634 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 3 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 4 ms
6,944 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 4 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 4 ms
6,944 KB |
testcase_21 | AC | 5 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 4 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 3 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 5 ms
6,940 KB |
testcase_38 | AC | 5 ms
6,940 KB |
testcase_39 | AC | 2 ms
6,944 KB |
testcase_40 | AC | 3 ms
6,940 KB |
testcase_41 | AC | 2 ms
6,940 KB |
testcase_42 | AC | 2 ms
6,940 KB |
testcase_43 | AC | 3 ms
6,944 KB |
testcase_44 | AC | 4 ms
6,940 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 2 ms
6,940 KB |
testcase_47 | AC | 3 ms
6,940 KB |
testcase_48 | AC | 4 ms
6,940 KB |
testcase_49 | AC | 2 ms
6,940 KB |
testcase_50 | AC | 2 ms
6,940 KB |
testcase_51 | AC | 3 ms
6,940 KB |
testcase_52 | AC | 2 ms
6,940 KB |
testcase_53 | AC | 2 ms
6,944 KB |
testcase_54 | AC | 2 ms
6,940 KB |
testcase_55 | AC | 2 ms
6,944 KB |
testcase_56 | AC | 1 ms
6,944 KB |
testcase_57 | AC | 2 ms
6,940 KB |
testcase_58 | AC | 3 ms
6,940 KB |
testcase_59 | AC | 2 ms
6,940 KB |
testcase_60 | AC | 6 ms
6,940 KB |
testcase_61 | AC | 5 ms
6,940 KB |
testcase_62 | AC | 1 ms
6,944 KB |
testcase_63 | AC | 1 ms
6,944 KB |
testcase_64 | AC | 2 ms
6,940 KB |
コンパイルメッセージ
main.cpp: In member function ‘void Dinic::add_edge(int, int, int)’: main.cpp:118:62: warning: narrowing conversion of ‘(&((Dinic*)this)->Dinic::graph.std::vector<std::vector<Dinic::edge> >::operator[](((std::vector<std::vector<Dinic::edge> >::size_type)to)))->std::vector<Dinic::edge>::size()’ from ‘std::vector<Dinic::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing] 118 | graph[from].push_back((edge) {to, cap, graph[to].size()}); | ~~~~~~~~~~~~~~^~ main.cpp:119:65: warning: narrowing conversion of ‘((&((Dinic*)this)->Dinic::graph.std::vector<std::vector<Dinic::edge> >::operator[](((std::vector<std::vector<Dinic::edge> >::size_type)from)))->std::vector<Dinic::edge>::size() - 1)’ from ‘std::vector<Dinic::edge>::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing] 119 | graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); | ~~~~~~~~~~~~~~~~~~~^~~
ソースコード
#include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <stack> #include <string> #include <utility> #include <vector> #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef long long int ll; typedef vector<int> VI; typedef vector<ll> VL; typedef pair<int, int> PI; const ll mod = 1e9 + 7; const int DEBUG = 1; const int N = 51; string s[N]; int n, m; pair<int, VL> check(int row) { int k = 0; VL t; int cur = 0; int cnt = 0; REP(i, 0, m + 1) { if (i < m && s[row][i] != '.') { if (cnt == 0) { cur = i; } cnt++; } else { k += cnt / 2; if (cnt % 2 != 0) { ll acc = 0; REP(j, 0, cnt / 2 + 1) { acc |= 1LL << (cur + 2 * j); } t.push_back(acc); } cnt = 0; } } return pair<int, VL>(k, t); } /** * Dinic's algorithm for maximum flow problem. * Header requirement: vector, queue * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810) */ class Dinic { private: struct edge { int to, cap, rev; // rev is the position of reverse edge in graph[to] }; std::vector<std::vector<edge> > graph; std::vector<int> level; std::vector<int> iter; /* Perform bfs and calculate distance from s */ void bfs(int s) { level.assign(level.size(), -1); std::queue<int> que; level[s] = 0; que.push(s); while (! que.empty()) { int v = que.front(); que.pop(); for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[e.to] == -1) { level[e.to] = level[v] + 1; que.push(e.to); } } } } /* search augment path by dfs. if f == -1, f is treated as infinity. */ int dfs(int v, int t, int f) { if (v == t) { return f; } for (int &i = iter[v]; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[v] < level[e.to]) { int newf = f == -1 ? e.cap : std::min(f, e.cap); int d = dfs(e.to, t, newf); if (d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } public: /* v is the number of vertices (labeled from 0 .. v-1) */ Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {} void add_edge(int from, int to, int cap) { graph[from].push_back((edge) {to, cap, graph[to].size()}); graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); } int max_flow(int s, int t) { int flow = 0; while (1) { bfs(s); if (level[t] < 0) { return flow; } iter.assign(iter.size(), 0); int f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } }; int calc(void) { Dinic din(n * m + 2); REP(i, 0, n) { REP(j, 0, m) { if (s[i][j] == '.') continue; int dxy[5] = {1, 0, -1, 0, 1}; REP(d, 0, 4) { int nx = i + dxy[d]; int ny = j + dxy[d + 1]; if (nx < 0 || nx >= n || ny < 0 || ny >= m) { continue; } if (s[nx][ny] != '.') { if ((i + j) % 2) { din.add_edge(i * m + j, nx * m + ny, 1); } else { din.add_edge(nx * m + ny, i * m + j, 1); } } } if ((i + j) % 2) { din.add_edge(n * m, i * m + j, 1); } else { din.add_edge(i * m + j, n * m + 1, 1); } } } return din.max_flow(n * m, n * m + 1); } int main(void){ cin >> n >> m; REP(i, 0, n) { cin >> s[i]; } int w = 0; int b = 0; REP(i, 0, n) { REP(j, 0, m) { if (s[i][j] == 'w') w++; if (s[i][j] == 'b') b++; } } int c = calc(); w -= c; b -= c; int mi = min(w, b); cout << c * 100 + mi * 8 + w + b << endl; }