結果
問題 | No.650 行列木クエリ |
ユーザー | はむこ |
提出日時 | 2016-09-19 23:19:40 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 629 ms / 2,000 ms |
コード長 | 18,405 bytes |
コンパイル時間 | 3,474 ms |
コンパイル使用メモリ | 203,248 KB |
実行使用メモリ | 106,544 KB |
最終ジャッジ日時 | 2024-10-09 08:53:12 |
合計ジャッジ時間 | 7,022 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 353 ms
26,368 KB |
testcase_02 | AC | 616 ms
99,920 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 360 ms
26,368 KB |
testcase_05 | AC | 629 ms
100,032 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 298 ms
27,776 KB |
testcase_09 | AC | 507 ms
106,544 KB |
testcase_10 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back #define all(x) (x).begin(), (x).end() #define fi first #define se second #define mt make_tuple #define mp make_pair template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using ll = long long; using ld = long double; using vll = vector<ll>; using vvll = vector<vll>; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using P = pair<ll, ll>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; cout << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const unordered_map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } void printbits(ll mask, ll n) { rep(i, n) { cout << !!(mask & (1ll << i)); } cout << endl; } #define ldout fixed << setprecision(40) static const long long INF = 1e18; class Mod { public: int num; int mod; Mod() : Mod(0) {} Mod(long long int n) : Mod(n, 1000000007) {} Mod(long long int n, int m) { mod = m; num = (n % mod + mod) % mod;} Mod(const string &s){ long long int tmp = 0; for(auto &c:s) tmp = (c-'0'+tmp*10) % mod; num = tmp; } Mod(int n) : Mod(static_cast<long long int>(n)) {} operator int() { return num; } void setmod(const int mod) { this->mod = mod; } }; istream &operator>>(istream &is, Mod &x) { long long int n; is >> n; x = n; return is; } ostream &operator<<(ostream &o, const Mod &x) { o << x.num; return o; } Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % a.mod); } Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; } Mod operator+(const Mod a, const long long int b) { return b + a; } Mod operator++(Mod &a) { return a + Mod(1); } Mod operator-(const Mod a, const Mod b) { return Mod((a.mod + a.num - b.num) % a.mod); } Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; } Mod operator--(Mod &a) { return a - Mod(1); } Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % a.mod); } Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; } Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; } Mod operator*(const Mod a, const int b) { return Mod(b)*a; } Mod operator+=(Mod &a, const Mod b) { return a = a + b; } Mod operator+=(long long int &a, const Mod b) { return a = a + b; } Mod operator-=(Mod &a, const Mod b) { return a = a - b; } Mod operator-=(long long int &a, const Mod b) { return a = a - b; } Mod operator*=(Mod &a, const Mod b) { return a = a * b; } Mod operator*=(long long int &a, const Mod b) { return a = a * b; } Mod operator*=(Mod& a, const long long int &b) { return a = a * b; } Mod factorial(const long long n) { if (n < 0) return 0; Mod ret = 1; for (int i = 1; i <= n; i++) { ret *= i; } return ret; } Mod operator^(const Mod a, const long long n) { if (n == 0) return Mod(1); Mod res = (a * a) ^ (n / 2); if (n % 2) res = res * a; return res; } Mod modpowsum(const Mod a, const long long b) { if (b == 0) return 0; if (b % 2 == 1) return modpowsum(a, b - 1) * a + Mod(1); Mod result = modpowsum(a, b / 2); return result * (a ^ (b / 2)) + result; } /*************************************/ // GF(p)の行列演算 /*************************************/ using number = Mod; using arr = vector<number>; using matrix = vector<vector<Mod>>; ostream &operator<<(ostream &o, const arr &v) { rep(i, v.size()) cout << v[i] << " "; cout << endl; return o; } ostream &operator<<(ostream &o, const matrix &v) { rep(i, v.size()) cout << v[i]; return o; } matrix zero(int n) { return matrix(n, arr(n, 0)); } // O(n^2) matrix identity(int n) { matrix A(n, arr(n, 0)); rep(i, n) A[i][i] = 1; return A; } // O(n^2) // O(n^3) matrix mul(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) rep(k, A[i].size()) C[i][j] += A[i][k] * B[k][j]; return C; } struct Pool { int pos; char mem[20000000]; // 20MB Pool(){ free(); } template<class T> T *fetch(size_t n = 1) { T *res = (T*)(mem + pos); pos += sizeof(T)*n; return res; } void free(){ pos = 0; } }; Pool pool; template<class T> class AssosiativeOperator { public: AssosiativeOperator(void) { } T T0; // 単位元 virtual T op(T a, T b) = 0; // 結合二項演算 }; template<class T> class AssosiativeOperatorMatrix : public AssosiativeOperator<T> { public: AssosiativeOperatorMatrix(void) { AssosiativeOperator<T>::T0 = identity(2); } virtual T op(T a, T b) { return mul(a, b); } }; template<class T> class SegmentTree { public: // datのデータ構造 // 0123456789ABCDEF // インターフェースの添字 // ################ // 1--------------- // datの添字, 0は使わない!! // 2-------3------- // 4---5---6---7--- // 8-9-A-B-C-D-E-F- // GHIJKLMNOPQRSTUV // v<<1, v<<1|1は子どもたちを表している T *dat; AssosiativeOperator<T>* op; int n = 1; // 確保しているサイズ! int bits = 0; // n == 1 << bits const size_t size_; // 確保しているサイズではない!! int ql, qr; SegmentTree(int n_, AssosiativeOperator<T>* op) : size_(n_) { this->op = op; while(n < n_) { n <<= 1; bits++; } dat = pool.fetch<T>(n+n); fill_n(dat, n*4, this->op->T0); } // 点更新 void update(int v, const T &x){ v += n; dat[v] = x; while (v){ v = v >> 1; dat[v] = op->op(dat[v<<1], dat[v<<1|1]); } } // 範囲クエリ // 範囲番号nの区間[nl, nr)にop(x)を演算結果を返す T query(int n, int nl, int nr){ // この関数は、[ql, qr)より上のノードとその子の全てにHITする if(nr <= ql || qr <= nl) return op->T0; if(ql <= nl && nr <= qr) return dat[n]; // 一回の区間更新に付き最大3回、した区間が小さい順にHitする。 int m = (nl + nr) / 2; return op->op(query(n<<1, nl, m), query(n<<1|1, m, nr)); } // [l, r)の演算結果を出力 T query(int l, int r){ ql = l; qr = r; return query(1, 0, n); } }; // 静的木 // // 構築O(n): オイラーツアー, 木の高さ, 祖先ダブリング // // LCA O(log n) // 頂点間最小辺数 O(log n) // 頂点から根までのパスの二分探索 O(log n) struct edge_t { int from, to; ll weight; }; using verticle_t = ll; class Tree { public: int MAXLOGV; vector<vector<edge_t>> m_edges; // m_edges[i][j]が存在: i->jの辺が存在 int vn; // 頂点の数, vn<2^MAXLOGV int root = 0; // 根ノードの番号 vector<verticle_t> m_verticles; vector<vector<verticle_t>> m_verticles_doubling; // m_verticles_doubling[i][j]: jのi^2番目の親までのm_vertivlesの結合演算opによる積分 AssosiativeOperator<verticle_t>* op; vector<vector<int>> parent; // parent[i][j]: jのi^2番目の親。j=0で直近の親。 vector<int> depth; // depth[i]: 頂点iの根からの深さ, 根が0 /*********/ // 構築 /*********/ Tree(int vn, int root) : vn(vn), root(root) { // TODO このへんの確保を最低限に MAXLOGV = ceil(log(vn) / log(2)) + 2; // +2は念の為 m_edges.resize(vn); m_verticles.resize(vn); parent.resize(MAXLOGV); rep(i, MAXLOGV) parent[i].resize(vn); depth.resize(vn); } void setAssosiativeOperator(AssosiativeOperator<verticle_t>* op_init) { op = op_init; } void constructDoubling(void) { m_verticles_doubling.resize(MAXLOGV); rep(i, MAXLOGV) m_verticles_doubling[i].resize(vn); rep(i, m_verticles_doubling.size()) rep(j, m_verticles_doubling[0].size()) m_verticles_doubling[i][j] = op->T0; } // 辺の構築 void unite(edge_t e) { m_edges[e.from].push_back({e.from, e.to, e.weight}); m_edges[e.to].push_back({e.to, e.from, e.weight}); } void unite(int u, int v) { unite({u, v, 1}); } // 頂点の構築 void setVerticle(int i, verticle_t v) { m_verticles_doubling[0][i] = m_verticles[i] = v; } // rootからの深さと親を確認。 // uniteし終わったらまずこれを呼ぶこと。 void init() { dfs(root, -1, 0); for (int k = 0; k+1 < MAXLOGV; k++) // 2^k代祖先を計算 for (int v = 0; v < vn; v++) if (parent[k][v] < 0) parent[k+1][v] = -1; // 2^k代親が根を超えてるなら、2^(k+1)代親も根を超える else parent[k+1][v] = parent[k][parent[k][v]]; // 2^(k+1)代の親は、2^k代親の2^k代親 // 親のダブリング rep(k, MAXLOGV - 1) // 2^k代祖先を計算 for (int v = 0; v < vn; v++) if (parent[k][v] < 0) parent[k+1][v] = -1; // 2^k代親が根を超えてるなら、2^(k+1)代親も根を超える else parent[k+1][v] = parent[k][parent[k][v]]; // 2^(k+1)代の親は、2^k代親の2^k代親 } // 1つ親と深さとオイラーツアーを構築 // TODO 機能毎に分ける void dfs(int v, int p, int d) { parent[0][v] = p; depth[v] = d; for (edge_t next : m_edges[v]) if (next.to != p) dfs(next.to, v, d+1); } // 木の直径を求める // 辺が重み付きでもOK! // // O(V) ll diameter(void) { using Result = pair<ll, int>; function<Result(int, int)> visit = [&](int p, int v){ Result r(0, v); for (auto e : m_edges[v]) if (e.to != p) { Result t = visit(v, e.to); t.first += e.weight; if (r.first < t.first) r = t; } return r; }; Result r = visit(-1, 0); Result t = visit(-1, r.second); // このあと、r, tからの距離を使って木の中心を求めることができる。O(V) // t.firstが偶数なら、rからt.first/2かつtからt.first/2の距離 // t.firstが偶数なら、rからt.first/2+1or+0かつtからt.first/2+1or+0の距離の二点 return t.first; // (r.second, t.second) is farthest pair } /*************/ // 頂点クエリ /*************/ // 頂点u, vの最小共通先祖 // // O(log n) int getParent(int index, ll n) const { ll ret = index; n = min(n, (1ll << MAXLOGV) - 1); rep(k, MAXLOGV) if (ret != -1) if (n & (1ll << k)) { ret = parent[k][ret]; } return ret; } // 頂点u, vの最小共通先祖 // // O(log n) int lca(int u, int v) const { if (depth[u] > depth[v]) swap(u, v); // uのほうが浅くなるように for (int k = 0; k < MAXLOGV; k++) // vをuと同じ深さまで遡る if ((depth[v] - depth[u])>>k & 1) v = parent[k][v]; if (u == v) return u; for (int k = MAXLOGV-1; k >= 0; k--) { // 行き過ぎないギリギリで遡る if (parent[k][u] == parent[k][v]) // 行き過ぎ continue; u = parent[k][u]; v = parent[k][v]; } return parent[0][u]; } // uとvの距離を求める // 距離はエッジの重み=1としたときのもの // // O(log n) int dist(int u, int v) const { int p = lca(u, v); return (depth[u]-depth[p]) + (depth[v]-depth[p]); } /*********/ // HL分解 /*********/ // heavy light decomposition // // 今までの番号を、Heavy-Lightパスの根から葉の方向へと付け替える in [0, n) // これ自体にはデータを載せず、パスの添字のみを取得するインターフェースのみ提供 vector<int> treesize; // m_edges.size(): 子の数 // i: ノードの添字 // j: Heavy pathの添字 int hl_size = 0; // Heavy pathの数 vector<int> group; // m_edges.size(): ノードiが属するグループj vector<int> id; // m_edges.size(): ノードiに再割り振りされた新ノード番号id in [0, m_edges.size()) vector<int> par; // hl_size: Heavy path jの根の親のノードi vector<int> bg; // hl_size: Heavy path jの根のノードi void setTreeSize(int v, int p) { treesize[v]=1; for (auto &u:m_edges[v]) if (u.to != p) { setTreeSize(u.to, v); treesize[v]+=treesize[u.to]; } } void build(int v, int p, int g, int& i) { group[v]=g; id[v]=i++; if ((v == root && m_edges[v].size() == 0) || (v != root && m_edges[v].size() == 1)) return; // 最大サイズの子hを求める int h=-1; for (auto &u:m_edges[v]) if (u.to != p) { if(h == -1 || treesize[h]<treesize[u.to]) { h=u.to; } } // Heavy build(h, v, g, i); // Light for (auto &u:m_edges[v]) if (u.to != p) if (h != u.to) { par.push_back(v); bg.push_back(i); build(u.to, v, hl_size++, i); } } void constructHLD(void) { int n = m_edges.size(); treesize.resize(n); group.resize(n); id.resize(n); setTreeSize(root, -1); int i = 0; // 再度割り振り直す添字番号 par.push_back(-1); bg.push_back(i); build(root, -1, hl_size++, i); } // O(log n) // // [r, c]の再割り振りされた添字区間を返す。区間は葉から根への順番。 // // rがcより根側のノードでなければならない // c側から、以下の漸化式によってパスを分解する // ret += {groupの根, c}, c = groupの根の親 using P=pair<int, int>; vector<P> hl_decomposition(int r, int c) { vector<P> res; while (group[c]!=group[r]) { res.push_back(P(bg[group[c]], id[c])); c=par[group[c]]; } res.push_back(P(id[r], id[c])); return res; } void print_HLDecomposition(void) { rep(i, m_edges.size()) { cout << group[i] << " " << id[i] << endl; } cout << "####" << endl; rep(i, hl_size) { cout << par[i] << " " << bg[i] << endl; } } /*************/ // 描画 /*************/ void print_dfs(int v, int p) const { for (int i = 0; i < depth[v]; i++) cout << " "; cout << v << endl; for (edge_t next : m_edges[v]) if (next.to != p) print_dfs(next.to, v); } void print(void) const { print_dfs(root, -1); } }; /* 6 0 1 1 3 0 2 2 4 2 5 0 1 2 3 4 5 */ int main() { int n; cin >> n; Tree tree(n, 0); SegmentTree<matrix> s(n, new AssosiativeOperatorMatrix<matrix>()); vector<int> as, bs; for (int i = 0; i < n-1; i++) { int a, b; cin >> a >> b; tree.unite(a, b); as.pb(a); bs.pb(b); } tree.init(); tree.constructHLD(); /* tree.print(); cout << "HL decomposition" << endl; tree.print_HLDecomposition(); */ ll q; cin >> q; rep(_, q) { char c; cin >> c; if (c == 'x') { ll index; cin >> index; int leaf_side_index = (tree.depth[as[index]] > tree.depth[bs[index]] ? as[index] : bs[index]); int leaf_side_hl_index = tree.id[leaf_side_index]; // cout << leaf_side_index << "#UPDATE" << endl; matrix m = zero(2); cin >> m[0][0] >> m[0][1] >> m[1][0] >> m[1][1]; s.update(leaf_side_hl_index, m); } else { ll u, v; cin >> u >> v; // u is root size auto paths = tree.hl_decomposition(u, v); // cout << paths << "#get" << endl; matrix m = identity(2); rep(i, paths.size()) { auto&& path = paths[i]; if (i == paths.size() - 1) { if (path.fi == path.se) break; path.fi++; } m = mul(s.query(path.fi, path.se+1), m); } cout << m[0][0] << " " << m[0][1] << " " << m[1][0] << " " << m[1][1] << endl; } } return 0; }