結果
問題 | No.426 往復漸化式 |
ユーザー | はむこ |
提出日時 | 2016-09-20 23:47:34 |
言語 | C++11 (gcc 13.3.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,095 bytes |
コンパイル時間 | 2,288 ms |
コンパイル使用メモリ | 185,520 KB |
実行使用メモリ | 105,856 KB |
最終ジャッジ日時 | 2024-11-17 12:56:00 |
合計ジャッジ時間 | 79,899 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
57,984 KB |
testcase_01 | AC | 4 ms
10,624 KB |
testcase_02 | AC | 4 ms
10,624 KB |
testcase_03 | AC | 44 ms
58,112 KB |
testcase_04 | AC | 42 ms
58,240 KB |
testcase_05 | AC | 656 ms
8,448 KB |
testcase_06 | AC | 650 ms
8,448 KB |
testcase_07 | AC | 2,362 ms
52,992 KB |
testcase_08 | AC | 2,383 ms
52,864 KB |
testcase_09 | AC | 4,467 ms
52,864 KB |
testcase_10 | AC | 4,448 ms
52,992 KB |
testcase_11 | AC | 3,225 ms
52,736 KB |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | AC | 4,569 ms
52,992 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | AC | 2,531 ms
52,992 KB |
testcase_20 | AC | 4,768 ms
52,992 KB |
testcase_21 | TLE | - |
testcase_22 | AC | 4,877 ms
105,856 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #ifdef _WIN32 #define scanfll(x) scanf("%I64d", x) #define printfll(x) printf("%I64d", x) #else #define scanfll(x) scanf("%lld", x) #define printfll(x) printf("%lld", x) #endif #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back #define all(x) (x).begin(), (x).end() #define fi first #define se second #define mt make_tuple #define mp make_pair template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using P = pair<ll, ll>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; cout << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const unordered_map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } string bits_to_string(ll mask, ll n) { string s; rep(i, n) s += '0' + !!(mask & (1ll << i)); return s; } #define ldout fixed << setprecision(40) static const double EPS = 1e-14; static const long long INF = 1e18; static const long long mo = 1e9+7; class Mod { public: int num; int mod; Mod() : Mod(0) {} Mod(long long int n) : Mod(n, 1000000007) {} Mod(long long int n, int m) { mod = m; num = (n % mod + mod) % mod;} Mod(const string &s){ long long int tmp = 0; for(auto &c:s) tmp = (c-'0'+tmp*10) % mod; num = tmp; } Mod(int n) : Mod(static_cast<long long int>(n)) {} operator int() { return num; } void setmod(const int mod) { this->mod = mod; } }; istream &operator>>(istream &is, Mod &x) { long long int n; is >> n; x = n; return is; } ostream &operator<<(ostream &o, const Mod &x) { o << x.num; return o; } Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % a.mod); } Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; } Mod operator+(const Mod a, const long long int b) { return b + a; } Mod operator++(Mod &a) { return a + Mod(1); } Mod operator-(const Mod a, const Mod b) { return Mod((a.mod + a.num - b.num) % a.mod); } Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; } Mod operator--(Mod &a) { return a - Mod(1); } Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % a.mod); } Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; } Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; } Mod operator*(const Mod a, const int b) { return Mod(b)*a; } Mod operator+=(Mod &a, const Mod b) { return a = a + b; } Mod operator+=(long long int &a, const Mod b) { return a = a + b; } Mod operator-=(Mod &a, const Mod b) { return a = a - b; } Mod operator-=(long long int &a, const Mod b) { return a = a - b; } Mod operator*=(Mod &a, const Mod b) { return a = a * b; } Mod operator*=(long long int &a, const Mod b) { return a = a * b; } Mod operator*=(Mod& a, const long long int &b) { return a = a * b; } Mod factorial(const long long n) { if (n < 0) return 0; Mod ret = 1; for (int i = 1; i <= n; i++) { ret *= i; } return ret; } Mod operator^(const Mod a, const long long n) { if (n == 0) return Mod(1); Mod res = (a * a) ^ (n / 2); if (n % 2) res = res * a; return res; } Mod modpowsum(const Mod a, const long long b) { if (b == 0) return 0; if (b % 2 == 1) return modpowsum(a, b - 1) * a + Mod(1); Mod result = modpowsum(a, b / 2); return result * (a ^ (b / 2)) + result; } /*************************************/ // 以下、modは素数でなくてはならない! /*************************************/ Mod inv(const Mod a) { return a ^ (a.mod - 2); } Mod operator/(const Mod a, const Mod b) { assert(b.num != 0); return a * inv(b); } Mod operator/(const long long int a, const Mod b) { assert(b.num != 0); return Mod(a) * inv(b); } Mod operator/=(Mod &a, const Mod b) { assert(b.num != 0); return a = a * inv(b); } /*************************************/ // GF(p)の行列演算 /*************************************/ using number = Mod; using arr = vector<number>; using matrix = vector<vector<Mod>>; ostream &operator<<(ostream &o, const arr &v) { rep(i, v.size()) cout << v[i] << " "; cout << endl; return o; } ostream &operator<<(ostream &o, const matrix &v) { rep(i, v.size()) cout << v[i]; return o; } matrix zero(int n) { return matrix(n, arr(n, 0)); } // O(n^2) matrix identity(int n) { matrix A(n, arr(n, 0)); rep(i, n) A[i][i] = 1; return A; } // O(n^2) // O(n^2) arr mul(const matrix &A, const arr &x) { // assert(A[0].size() == x.size()); arr y(A.size(), 0); rep(i, A.size()) rep(j, A[0].size()) y[i] += A[i][j] * x[j]; return y; } // O(n^3) matrix mul(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) rep(k, A[i].size()) C[i][j] += A[i][k] * B[k][j]; return C; } // O(n^2) matrix plu(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) C[i][j] += A[i][j] + B[i][j]; return C; } // O(n^2) arr plu(const arr &A, const arr &B) { assert(A.size() == B.size()); arr C(A.size()); rep(i, A.size()) C[i] += A[i] + B[i]; return C; } int T = 2; ll n; vector<matrix> A, B, S; vector<matrix> Ab, Bb, Tri; arr a0(3), bn(2); ll bucket_num; void updateBucket(ll bucket_index) { if (bucket_index >= bucket_num) return; matrix Ab_i = identity(3); matrix Bb_i = identity(2); matrix Tri_i = matrix(2, arr(3, 0)); rep(i, T) { Tri_i = plu(Tri_i, mul(mul(Bb_i, S[bucket_index*T+1+i]), Ab_i)); Ab_i = mul(A[bucket_index*T+1+i], Ab_i); Bb_i = mul(Bb_i, B[bucket_index*T+1+i]); } Ab[bucket_index] = Ab_i; Bb[bucket_index] = Bb_i; Tri[bucket_index] = Tri_i; } arr get_a(ll index) { if (index <= 0) return a0; arr ret = a0; ll i = 0; while (i != index) { if (i % T == 1 && i + T <= index) { ret = mul(Ab[i/T], ret); i += T; } else { ret = mul(A[i], ret); i++; } } return ret; } arr get_b(ll index) { index--; arr ret = bn; ll i = n; while (i != index) { if (i % T == 0 && i - T >= index) { ret = mul(Bb[i/T-1], ret); i -= T; } else { ret = mul(B[i], ret); i--; } } return ret; } matrix get_P(ll index) { if (index >= n) return matrix(2, arr(3, 0)); if (index % T == 0 && index + T <= n) { matrix ret = Tri[index / T]; ret = plu(ret, mul(mul(Bb[index / T], get_P(index + T)), Ab[index / T])); return ret; } else { matrix ret = S[index+1]; ret = plu(ret, mul(mul(B[index+1], get_P(index + 1)), A[index+1])); return ret; } } int main(int argc, char** argv) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; T = 10 + (ll)(200. * ((double)n / 100000.)); A.resize(n+1); B.resize(n+1); S.resize(n+1); rep(i, n+1) { A[i] = identity(3); B[i] = identity(2); S[i] = matrix(2, arr(3, 0)); } repi(i, 1, n+1) { rep(j, 6) { S[i][j/3][j%3] = 6 * i + j; } } bucket_num = n / T; Ab.resize(bucket_num); Bb.resize(bucket_num); Tri.resize(bucket_num); rep(i, bucket_num) { updateBucket(i); } rep(i, 3) cin >> a0[i]; rep(i, 2) cin >> bn[i]; ll q; cin >> q; rep(_, q) { string type; cin >> type; ll index; cin >> index; if (type == "a") { rep(i, 9) cin >> A[index][i/3][i%3]; updateBucket((index - 1) / T); } else if (type == "b") { rep(i, 4) cin >> B[index][i/2][i%2]; updateBucket((index - 1)/ T); } else if (type == "ga") { auto ret = get_a(index); cout << ret[0] << " " << ret[1] << " " << ret[2] << endl; } else { matrix P = get_P(index); arr a_chain = get_a(index+1); arr b_chain = get_b(index+1); arr b = plu(b_chain, mul(P, a_chain)); cout << b[0] << " " << b[1] << endl; } } return 0; }