結果
問題 | No.426 往復漸化式 |
ユーザー | りあん |
提出日時 | 2016-09-21 20:38:24 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 3,908 ms / 5,000 ms |
コード長 | 10,407 bytes |
コンパイル時間 | 3,004 ms |
コンパイル使用メモリ | 114,816 KB |
実行使用メモリ | 196,332 KB |
最終ジャッジ日時 | 2024-11-17 15:21:39 |
合計ジャッジ時間 | 63,698 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
19,328 KB |
testcase_01 | AC | 33 ms
20,736 KB |
testcase_02 | AC | 32 ms
20,736 KB |
testcase_03 | AC | 77 ms
24,320 KB |
testcase_04 | AC | 74 ms
24,320 KB |
testcase_05 | AC | 472 ms
42,872 KB |
testcase_06 | AC | 471 ms
42,484 KB |
testcase_07 | AC | 3,401 ms
154,088 KB |
testcase_08 | AC | 3,337 ms
154,724 KB |
testcase_09 | AC | 3,647 ms
172,012 KB |
testcase_10 | AC | 3,635 ms
172,772 KB |
testcase_11 | AC | 3,330 ms
140,384 KB |
testcase_12 | AC | 3,611 ms
141,020 KB |
testcase_13 | AC | 3,908 ms
175,704 KB |
testcase_14 | AC | 3,671 ms
141,028 KB |
testcase_15 | AC | 3,438 ms
140,004 KB |
testcase_16 | AC | 3,777 ms
139,880 KB |
testcase_17 | AC | 3,799 ms
140,244 KB |
testcase_18 | AC | 3,811 ms
140,264 KB |
testcase_19 | AC | 3,330 ms
140,144 KB |
testcase_20 | AC | 3,456 ms
140,512 KB |
testcase_21 | AC | 3,878 ms
196,332 KB |
testcase_22 | AC | 3,903 ms
140,380 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.IO; class Program { const int M = 1000000007; const double eps = 1e-9; static int[] dd = { 0, 1, 0, -1, 0 }; struct Nod { public long[][] A, B, S; } static Nod next(Nod x, Nod y) { var mt = new mymath(); Nod ret = new Nod(); ret.A = mt.mulmat(y.A, x.A); ret.B = mt.mulmat(x.B, y.B); ret.S = mt.addmat(mt.mulmat(x.B, mt.mulmat(y.S, x.A)), x.S); return ret; } static Nod init() { var ret = new Nod(); ret.A = new long[3][]; for (int i = 0; i < 3; i++) { ret.A[i] = new long[3]; ret.A[i][i] = 1; } ret.B = new long[2][]; ret.S = new long[2][]; for (int i = 0; i < 2; i++) { ret.B[i] = new long[2]; ret.S[i] = new long[3]; ret.B[i][i] = 1; } return ret; } static Nod init(int i) { var ret = init(); for (int j = 0; j < 2; j++) for (int k = 0; k < 3; k++) ret.S[j][k] = i * 6 + j * 3 + k; return ret; } static void Main() { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; var sc = new Scan(); var mt = new mymath(); int n = sc.Int; var sgA = new Segtree<long[][]>(n + 9, (x, y) => mt.mulmat(y, x), mt.E(3)); var sgB = new Segtree<long[][]>(n + 9, (x, y) => mt.mulmat(x, y), mt.E(2)); var sgP = new Segtree<Nod>(n + 9, (x, y) => next(x, y), init()); for (int i = 0; i < n + 9; i++) { sgP.update(i, init(i)); } var a = sc.LongArr; var b = sc.LongArr; int q = sc.Int; for (int i = 0; i < q; i++) { var inp = sc.StrArr; int ind = int.Parse(inp[1]); Nod nod = sgP.look(ind); switch (inp[0]) { case "a": for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]); sgA.update(ind, nod.A); sgP.update(ind, nod); break; case "b": for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]); sgB.update(ind, nod.B); sgP.update(ind, nod); break; case "ga": DBG(mt.mulmat(sgA.run(0, ind), a)); break; case "gb": DBG(mt.addmat(mt.mulmat(sgB.run(ind + 1, n + 1), b), mt.mulmat(sgP.run(ind + 1, n + 1).S, mt.mulmat(sgA.run(0, ind + 1), a)))); break; } } sw.Flush(); } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static void swap<T>(IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } static T Max<T>(params T[] a) { return a.Max(); } static T Min<T>(params T[] a) { return a.Min(); } static void DBG<T>(params T[] a) { Console.WriteLine(string.Join(" ", a)); } static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); } static T[] copy<T>(IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public double Double { get { return double.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } T cv<T>(string inp) { if (typeof(T).Equals(typeof(int))) return (T)Convert.ChangeType(int.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(long))) return (T)Convert.ChangeType(long.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(char))) return (T)Convert.ChangeType(inp[0], typeof(T)); return (T)Convert.ChangeType(inp, typeof(T)); } public void Multi<T>(out T a) { a = cv<T>(Str); } public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } class mymath { static int Mod = 1000000007; public void setMod(int m) { Mod = m; } public bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public bool[] sieve(int n) { var isp = new bool[n + 1]; for (int i = 2; i <= n; i++) isp[i] = true; for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false; return isp; } public List<int> getprimes(int n) { var prs = new List<int>(); var isp = sieve(n); for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i); return prs; } public long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public long[][] powmat(long[][] A, long n) { if (n == 0) return E(A.Length); var t = powmat(A, n / 2); if ((n & 1) == 0) return mulmat(t, t); return mulmat(mulmat(t, t), A); } public long[] mulmat(long[][] A, long[] x) { int n = A.Length, m = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % Mod; return ans; } public long[][] mulmat(long[][] A, long[][] B) { int n = A.Length, m = B[0].Length, l = B.Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) for (int k = 0; k < l; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % Mod; } return ans; } public long[][] addmat(long[][] A, long[][] B) { int n = A.Length, m = A[0].Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) ans[i][j] = (A[i][j] + B[i][j]) % Mod; } return ans; } public long[] addmat(long[] x, long[] y) { int n = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) { ans[i] = (x[i] + y[i]) % Mod; } return ans; } public long powmod(long a, long b) { if (a >= Mod) return powmod(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = powmod(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } public long lcm(long a, long b) { return a * (b / gcd(a, b)); } public long Comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; var numerator = new int[r]; var denominator = new int[r]; for (int k = 0; k < r; k++) { numerator[k] = n - r + k + 1; denominator[k] = k + 1; } for (int p = 2; p <= r; p++) { int pivot = denominator[p - 1]; if (pivot > 1) { int offset = (n - r) % p; for (int k = p - 1; k < r; k += p) { numerator[k - offset] /= pivot; denominator[k] /= pivot; } } } long result = 1; for (int k = 0; k < r; k++) if (numerator[k] > 1) result = result * numerator[k] % Mod; return result; } } class Segtree<T> { int n; T[] tree; Func<T, T, T> f; T exnum; public Segtree(int m, Func<T, T, T> f, T ex) { this.f = f; this.exnum = ex; n = 1; while (n < m) n <<= 1; tree = new T[(n << 1) - 1]; for (int i = 0; i < tree.Length; i++) tree[i] = ex; } public Segtree(int m, T ini, Func<T, T, T> f, T ex) { this.f = f; this.exnum = ex; n = 1; while (n < m) n <<= 1; tree = new T[(n << 1) - 1]; for (int i = 0; i < tree.Length; i++) tree[i] = ini; for (int i = 0; i < m; ++i) update(i, ini); } public void update(int j, T x) { int i = j + n - 1; tree[i] = x; while (i > 0) { i = (i - 1) >> 1; tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]); } } public T look(int i) { return tree[i + n - 1]; } // [s, t) public T run(int s, int t) { return query(s, t, 0, 0, n); } T query(int s, int t, int k, int l, int r) { if (r <= s || t <= l) return exnum; if (s <= l && r <= t) return tree[k]; return f(query(s, t, (k << 1) + 1, l, (l + r) >> 1), query(s, t, (k + 1) << 1, (l + r) >> 1, r)); } }