結果

問題 No.426 往復漸化式
ユーザー りあんりあん
提出日時 2016-09-21 20:38:24
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 3,908 ms / 5,000 ms
コード長 10,407 bytes
コンパイル時間 3,004 ms
コンパイル使用メモリ 114,816 KB
実行使用メモリ 196,332 KB
最終ジャッジ日時 2024-11-17 15:21:39
合計ジャッジ時間 63,698 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 22
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #
プレゼンテーションモードにする

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
class Program
{
const int M = 1000000007;
const double eps = 1e-9;
static int[] dd = { 0, 1, 0, -1, 0 };
struct Nod
{
public long[][] A, B, S;
}
static Nod next(Nod x, Nod y)
{
var mt = new mymath();
Nod ret = new Nod();
ret.A = mt.mulmat(y.A, x.A);
ret.B = mt.mulmat(x.B, y.B);
ret.S = mt.addmat(mt.mulmat(x.B, mt.mulmat(y.S, x.A)), x.S);
return ret;
}
static Nod init()
{
var ret = new Nod();
ret.A = new long[3][];
for (int i = 0; i < 3; i++)
{
ret.A[i] = new long[3];
ret.A[i][i] = 1;
}
ret.B = new long[2][];
ret.S = new long[2][];
for (int i = 0; i < 2; i++)
{
ret.B[i] = new long[2];
ret.S[i] = new long[3];
ret.B[i][i] = 1;
}
return ret;
}
static Nod init(int i)
{
var ret = init();
for (int j = 0; j < 2; j++)
for (int k = 0; k < 3; k++)
ret.S[j][k] = i * 6 + j * 3 + k;
return ret;
}
static void Main()
{
var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
var sc = new Scan();
var mt = new mymath();
int n = sc.Int;
var sgA = new Segtree<long[][]>(n + 9, (x, y) => mt.mulmat(y, x), mt.E(3));
var sgB = new Segtree<long[][]>(n + 9, (x, y) => mt.mulmat(x, y), mt.E(2));
var sgP = new Segtree<Nod>(n + 9, (x, y) => next(x, y), init());
for (int i = 0; i < n + 9; i++)
{
sgP.update(i, init(i));
}
var a = sc.LongArr;
var b = sc.LongArr;
int q = sc.Int;
for (int i = 0; i < q; i++)
{
var inp = sc.StrArr;
int ind = int.Parse(inp[1]);
Nod nod = sgP.look(ind);
switch (inp[0])
{
case "a":
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)
nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]);
sgA.update(ind, nod.A);
sgP.update(ind, nod);
break;
case "b":
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]);
sgB.update(ind, nod.B);
sgP.update(ind, nod);
break;
case "ga":
DBG(mt.mulmat(sgA.run(0, ind), a));
break;
case "gb":
DBG(mt.addmat(mt.mulmat(sgB.run(ind + 1, n + 1), b), mt.mulmat(sgP.run(ind + 1, n + 1).S, mt.mulmat(sgA.run(0, ind + 1), a))));
break;
}
}
sw.Flush();
}
static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
static void swap<T>(IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
static T Max<T>(params T[] a) { return a.Max(); }
static T Min<T>(params T[] a) { return a.Min(); }
static void DBG<T>(params T[] a) { Console.WriteLine(string.Join(" ", a)); }
static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); }
static T[] copy<T>(IList<T> a)
{
var ret = new T[a.Count];
for (int i = 0; i < a.Count; i++) ret[i] = a[i];
return ret;
}
}
class Scan
{
public int Int { get { return int.Parse(Str); } }
public long Long { get { return long.Parse(Str); } }
public double Double { get { return double.Parse(Str); } }
public string Str { get { return Console.ReadLine().Trim(); } }
public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } }
public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); }
public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } }
public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } }
public string[] StrArr { get { return Str.Split(); } }
T cv<T>(string inp)
{
if (typeof(T).Equals(typeof(int))) return (T)Convert.ChangeType(int.Parse(inp), typeof(T));
if (typeof(T).Equals(typeof(long))) return (T)Convert.ChangeType(long.Parse(inp), typeof(T));
if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T));
if (typeof(T).Equals(typeof(char))) return (T)Convert.ChangeType(inp[0], typeof(T));
return (T)Convert.ChangeType(inp, typeof(T));
}
public void Multi<T>(out T a) { a = cv<T>(Str); }
public void Multi<T, U>(out T a, out U b)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
public void Multi<T, U, V>(out T a, out U b, out V c)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
static int Mod = 1000000007;
public void setMod(int m) { Mod = m; }
public bool isprime(long a)
{
if (a < 2) return false;
for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
return true;
}
public bool[] sieve(int n)
{
var isp = new bool[n + 1];
for (int i = 2; i <= n; i++) isp[i] = true;
for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false;
return isp;
}
public List<int> getprimes(int n)
{
var prs = new List<int>();
var isp = sieve(n);
for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i);
return prs;
}
public long[][] E(int n)
{
var ret = new long[n][];
for (int i = 0; i < n; i++)
{
ret[i] = new long[n];
ret[i][i] = 1;
}
return ret;
}
public long[][] powmat(long[][] A, long n)
{
if (n == 0) return E(A.Length);
var t = powmat(A, n / 2);
if ((n & 1) == 0) return mulmat(t, t);
return mulmat(mulmat(t, t), A);
}
public long[] mulmat(long[][] A, long[] x)
{
int n = A.Length, m = x.Length;
var ans = new long[n];
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % Mod;
return ans;
}
public long[][] mulmat(long[][] A, long[][] B)
{
int n = A.Length, m = B[0].Length, l = B.Length;
var ans = new long[n][];
for (int i = 0; i < n; i++)
{
ans[i] = new long[m];
for (int j = 0; j < m; j++) for (int k = 0; k < l; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % Mod;
}
return ans;
}
public long[][] addmat(long[][] A, long[][] B)
{
int n = A.Length, m = A[0].Length;
var ans = new long[n][];
for (int i = 0; i < n; i++)
{
ans[i] = new long[m];
for (int j = 0; j < m; j++) ans[i][j] = (A[i][j] + B[i][j]) % Mod;
}
return ans;
}
public long[] addmat(long[] x, long[] y)
{
int n = x.Length;
var ans = new long[n];
for (int i = 0; i < n; i++)
{
ans[i] = (x[i] + y[i]) % Mod;
}
return ans;
}
public long powmod(long a, long b)
{
if (a >= Mod) return powmod(a % Mod, b);
if (a == 0) return 0;
if (b == 0) return 1;
var t = powmod(a, b / 2);
if ((b & 1) == 0) return t * t % Mod;
return t * t % Mod * a % Mod;
}
public long gcd(long a, long b)
{
while (b > 0) { var t = a % b; a = b; b = t; }
return a;
}
public long lcm(long a, long b) { return a * (b / gcd(a, b)); }
public long Comb(int n, int r)
{
if (n < 0 || r < 0 || r > n) return 0;
if (n - r < r) r = n - r;
if (r == 0) return 1;
if (r == 1) return n;
var numerator = new int[r];
var denominator = new int[r];
for (int k = 0; k < r; k++)
{
numerator[k] = n - r + k + 1;
denominator[k] = k + 1;
}
for (int p = 2; p <= r; p++)
{
int pivot = denominator[p - 1];
if (pivot > 1)
{
int offset = (n - r) % p;
for (int k = p - 1; k < r; k += p)
{
numerator[k - offset] /= pivot;
denominator[k] /= pivot;
}
}
}
long result = 1;
for (int k = 0; k < r; k++) if (numerator[k] > 1) result = result * numerator[k] % Mod;
return result;
}
}
class Segtree<T>
{
int n;
T[] tree;
Func<T, T, T> f;
T exnum;
public Segtree(int m, Func<T, T, T> f, T ex)
{
this.f = f;
this.exnum = ex;
n = 1;
while (n < m) n <<= 1;
tree = new T[(n << 1) - 1];
for (int i = 0; i < tree.Length; i++) tree[i] = ex;
}
public Segtree(int m, T ini, Func<T, T, T> f, T ex)
{
this.f = f;
this.exnum = ex;
n = 1;
while (n < m) n <<= 1;
tree = new T[(n << 1) - 1];
for (int i = 0; i < tree.Length; i++) tree[i] = ini;
for (int i = 0; i < m; ++i) update(i, ini);
}
public void update(int j, T x)
{
int i = j + n - 1;
tree[i] = x;
while (i > 0)
{
i = (i - 1) >> 1;
tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]);
}
}
public T look(int i) { return tree[i + n - 1]; }
// [s, t)
public T run(int s, int t) { return query(s, t, 0, 0, n); }
T query(int s, int t, int k, int l, int r)
{
if (r <= s || t <= l) return exnum;
if (s <= l && r <= t) return tree[k];
return f(query(s, t, (k << 1) + 1, l, (l + r) >> 1), query(s, t, (k + 1) << 1, (l + r) >> 1, r));
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0