結果
問題 | No.423 ハムスター語初級(数詞) |
ユーザー | りあん |
提出日時 | 2016-09-21 21:53:48 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,115 bytes |
コンパイル時間 | 4,541 ms |
コンパイル使用メモリ | 115,312 KB |
実行使用メモリ | 27,612 KB |
最終ジャッジ日時 | 2024-11-17 10:34:14 |
合計ジャッジ時間 | 1,820 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.IO; class Program { const int M = 1000000007; const double eps = 1e-9; static int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; var sc = new Scan(); int st = 0; string s = ""; while (true) { var c = Console.Read(); if ((st == 0 || st == 3) && c == 'h') st = 1; else if (st == 1 && c == 'a') st = 2; else if (st == 2 && c == 'm') st = 3; else if (st == 3 && c == 'u') st = 0; else if ((st == 0 || st == 3) && c == '\n') break; else goto err; s += c; } DBG(s == "ham" ? s : s + "ham"); return; err: DBG("hoge"); sw.Flush(); } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static void swap<T>(IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } static T Max<T>(params T[] a) { return a.Max(); } static T Min<T>(params T[] a) { return a.Min(); } static void DBG<T>(params T[] a) { Console.WriteLine(string.Join(" ", a)); } static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); } static T[] copy<T>(IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public double Double { get { return double.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } T cv<T>(string inp) { if (typeof(T).Equals(typeof(int))) return (T)Convert.ChangeType(int.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(long))) return (T)Convert.ChangeType(long.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T)); if (typeof(T).Equals(typeof(char))) return (T)Convert.ChangeType(inp[0], typeof(T)); return (T)Convert.ChangeType(inp, typeof(T)); } public void Multi<T>(out T a) { a = cv<T>(Str); } public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } class mymath { static int Mod = 1000000007; public void setMod(int m) { Mod = m; } public bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public bool[] sieve(int n) { var isp = new bool[n + 1]; for (int i = 2; i <= n; i++) isp[i] = true; for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false; return isp; } public List<int> getprimes(int n) { var prs = new List<int>(); var isp = sieve(n); for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i); return prs; } public long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public long[][] powmat(long[][] A, long n) { if (n == 0) return E(A.Length); var t = powmat(A, n / 2); if ((n & 1) == 0) return mulmat(t, t); return mulmat(mulmat(t, t), A); } public long[] mulmat(long[][] A, long[] x) { int n = A.Length, m = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % Mod; return ans; } public long[][] mulmat(long[][] A, long[][] B) { int n = A.Length, m = B[0].Length, l = B.Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) for (int k = 0; k < l; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % Mod; } return ans; } public long[][] addmat(long[][] A, long[][] B) { int n = A.Length, m = A[0].Length; var ans = new long[n][]; for (int i = 0; i < n; i++) { ans[i] = new long[m]; for (int j = 0; j < m; j++) ans[i][j] = (A[i][j] + B[i][j]) % Mod; } return ans; } public long[] addmat(long[] x, long[] y) { int n = x.Length; var ans = new long[n]; for (int i = 0; i < n; i++) ans[i] = (x[i] + y[i]) % Mod; return ans; } public long powmod(long a, long b) { if (a >= Mod) return powmod(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = powmod(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } public long lcm(long a, long b) { return a * (b / gcd(a, b)); } public long Comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; var numerator = new int[r]; var denominator = new int[r]; for (int k = 0; k < r; k++) { numerator[k] = n - r + k + 1; denominator[k] = k + 1; } for (int p = 2; p <= r; p++) { int pivot = denominator[p - 1]; if (pivot > 1) { int offset = (n - r) % p; for (int k = p - 1; k < r; k += p) { numerator[k - offset] /= pivot; denominator[k] /= pivot; } } } long result = 1; for (int k = 0; k < r; k++) if (numerator[k] > 1) result = result * numerator[k] % Mod; return result; } }