結果

問題 No.424 立体迷路
ユーザー koba-e964koba-e964
提出日時 2016-09-22 23:20:30
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 2,970 bytes
コンパイル時間 741 ms
コンパイル使用メモリ 99,564 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-05 07:06:10
合計ジャッジ時間 1,421 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef vector<ll> VL;
typedef pair<int, int> PI;
const ll mod = 1e9 + 7;
/**
* Dijkstra's algorithm.
* First, call add_edge() to add edges.
* Second, call solve() to calculate the length of the shortest path from source to each vertex.
* Header requirement: algorithm, queue, vector
* Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231)
*/
const ll inf = 1e16;
template<class Len = int>
class Dijkstra {
private:
int n;
std::vector<std::vector<std::pair<int, Len> > > edges;
public:
/**
* n: the number of vertices
*/
Dijkstra(int n) : n(n), edges(n) {}
/*
* from: the source of edge to add
* to: the target of edge to add
* cost: the cost of edge to add
*/
void add_edge(int from, int to, Len cost) {
edges[from].push_back(std::pair<int, Len>(to, cost));
}
/*
* This function returns an array consisting of the distances from vertex source.
*/
std::vector<Len> solve(int source) {
typedef std::pair<Len, int> pi;
std::vector<Len> d(n, inf);
std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que;
que.push(pi(0, source));
while (!que.empty()) {
pi p = que.top(); que.pop();
int idx = p.second;
if (d[idx] <= p.first) {
continue;
}
d[idx] = p.first;
for(int j = 0; j < edges[idx].size(); ++j) {
que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first));
}
}
return d;
}
};
const int H = 51;
string s[H];
int main(void){
int h, w;
cin >> h >> w;
int sx, sy, gx, gy;
cin >> sx >> sy >> gx >> gy;
sx--, sy--, gx--, gy--;
REP(i, 0, h) {
cin >> s[i];
}
Dijkstra<ll> dijk(h * w);
REP(i, 0, h) {
REP(j, 0, w) {
int dxy[5] = {1, 0, -1, 0, 1};
REP(d, 0, 4) {
int nx = i + dxy[d];
int ny = j + dxy[d + 1];
if (nx < 0 || nx >= h || ny < 0 || ny >= w) {
continue;
}
int diff = s[i][j] - s[nx][ny];
if (diff >= -1 && diff <= 1) {
dijk.add_edge(i * w + j, nx * w + ny, 1);
}
}
REP(d, 0, 4) {
int nx = i + 2 * dxy[d];
int ny = j + 2 * dxy[d + 1];
if (nx < 0 || nx >= h || ny < 0 || ny >= w) {
continue;
}
char midheight = s[(i + nx) / 2][(j + ny) / 2];
int diff = s[i][j] - s[nx][ny];
if (diff == 0 && midheight < s[i][j]) {
dijk.add_edge(i * w + j, nx * w + ny, 1);
}
}
}
}
ll res = dijk.solve(sx * w + sy)[gx * w + gy];
cout << (res == inf ? "NO" : "YES") << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0