結果
問題 | No.424 立体迷路 |
ユーザー |
|
提出日時 | 2016-09-22 23:20:30 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 2,970 bytes |
コンパイル時間 | 741 ms |
コンパイル使用メモリ | 99,564 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-05 07:06:10 |
合計ジャッジ時間 | 1,421 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 21 |
ソースコード
#include <algorithm>#include <bitset>#include <cassert>#include <cctype>#include <cmath>#include <cstdio>#include <cstdlib>#include <cstring>#include <ctime>#include <deque>#include <functional>#include <iomanip>#include <iostream>#include <list>#include <map>#include <numeric>#include <queue>#include <set>#include <sstream>#include <stack>#include <string>#include <utility>#include <vector>#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)using namespace std;typedef long long int ll;typedef vector<int> VI;typedef vector<ll> VL;typedef pair<int, int> PI;const ll mod = 1e9 + 7;/*** Dijkstra's algorithm.* First, call add_edge() to add edges.* Second, call solve() to calculate the length of the shortest path from source to each vertex.* Header requirement: algorithm, queue, vector* Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231)*/const ll inf = 1e16;template<class Len = int>class Dijkstra {private:int n;std::vector<std::vector<std::pair<int, Len> > > edges;public:/*** n: the number of vertices*/Dijkstra(int n) : n(n), edges(n) {}/** from: the source of edge to add* to: the target of edge to add* cost: the cost of edge to add*/void add_edge(int from, int to, Len cost) {edges[from].push_back(std::pair<int, Len>(to, cost));}/** This function returns an array consisting of the distances from vertex source.*/std::vector<Len> solve(int source) {typedef std::pair<Len, int> pi;std::vector<Len> d(n, inf);std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que;que.push(pi(0, source));while (!que.empty()) {pi p = que.top(); que.pop();int idx = p.second;if (d[idx] <= p.first) {continue;}d[idx] = p.first;for(int j = 0; j < edges[idx].size(); ++j) {que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first));}}return d;}};const int H = 51;string s[H];int main(void){int h, w;cin >> h >> w;int sx, sy, gx, gy;cin >> sx >> sy >> gx >> gy;sx--, sy--, gx--, gy--;REP(i, 0, h) {cin >> s[i];}Dijkstra<ll> dijk(h * w);REP(i, 0, h) {REP(j, 0, w) {int dxy[5] = {1, 0, -1, 0, 1};REP(d, 0, 4) {int nx = i + dxy[d];int ny = j + dxy[d + 1];if (nx < 0 || nx >= h || ny < 0 || ny >= w) {continue;}int diff = s[i][j] - s[nx][ny];if (diff >= -1 && diff <= 1) {dijk.add_edge(i * w + j, nx * w + ny, 1);}}REP(d, 0, 4) {int nx = i + 2 * dxy[d];int ny = j + 2 * dxy[d + 1];if (nx < 0 || nx >= h || ny < 0 || ny >= w) {continue;}char midheight = s[(i + nx) / 2][(j + ny) / 2];int diff = s[i][j] - s[nx][ny];if (diff == 0 && midheight < s[i][j]) {dijk.add_edge(i * w + j, nx * w + ny, 1);}}}}ll res = dijk.solve(sx * w + sy)[gx * w + gy];cout << (res == inf ? "NO" : "YES") << endl;}