結果

問題 No.425 ジャンケンの必勝法
ユーザー 37zigen
提出日時 2016-09-23 03:53:03
言語 Java
(openjdk 23)
結果
AC  
実行時間 165 ms / 2,000 ms
コード長 3,698 bytes
コンパイル時間 3,600 ms
コンパイル使用メモリ 82,208 KB
実行使用メモリ 42,636 KB
最終ジャッジ日時 2024-11-17 19:51:25
合計ジャッジ時間 7,436 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

package No400;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class C {
public static void main(String[] args) {
new C().run();
}
void run() {
solver();
}
double EPS = 1e-6;
void solver() {
Scanner sc = new Scanner(System.in);
int p = sc.nextInt();
int q = sc.nextInt();
ArrayList<Integer> list = new ArrayList<>();
int tmp = p;
if (q != 0) {
while (tmp != 100) {
tmp = Math.min(100, tmp + q);
list.add(tmp);
}
tmp = p;
while (tmp != 0) {
tmp = Math.max(0, tmp - q);
list.add(tmp);
}
tmp = 0;
while (tmp != 100) {
tmp = Math.min(100, tmp + q);
list.add(tmp);
}
tmp = 100;
while (tmp != 0) {
tmp = Math.max(0, tmp - q);
list.add(tmp);
}
}
list.add(p);
list.sort(null);
int idx = -1;
for (int i = 0; i < list.size(); i++) {
if (Math.abs(list.get(i) - p) < EPS)
idx = i;
while (i + 1 < list.size() && Math.abs(list.get(i) - list.get(i + 1)) < EPS) {
list.remove(i + 1);
}
}
int n = list.size();
double[][] vec = new double[n][1];
double[][] m = new double[n][n];
for (int i = 0; i < n; i++) {
m[i][i] = 1.0;
}
for (int i = 0; i < n; i++) {
vec[i][0] += list.get(i) / 100.0 * 0.5 + (100 - list.get(i)) / 100.0 * 1.0 / 3.0;
int idx1 = list.indexOf(list.get(i) - q);
if (idx1 == -1)
m[i][0] -= list.get(i) / 100.0 * 0.5;
else
m[i][Math.max(0, idx1)] -= list.get(i) / 100.0 * 0.5;
int idx2 = list.indexOf(list.get(i) + q);
if (idx2 == -1)
m[i][n - 1] -= (100 - list.get(i)) / 100.0 * 1.0 / 3.0;
else
m[i][idx2] -= (100 - list.get(i)) / 100.0 * 1.0 / 3.0;
}
m = Rev(m);
vec = MtPrd(m, vec);
System.out.println(1.0 / 3.0 + 1.0 / 3.0 * vec[idx][0]);
}
public static double[][] Rev(double[][] OM) {
int n = OM.length, m = OM[0].length;
if (n != m)
return null;
double[][] M = new double[n][2 * n];
m = 2 * n;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
M[i][j] = OM[i][j];
}
M[i][n + i] = 1;
}
double[][] res = operateElementarily(M);
if (res == null)
return null;
// resotration
double[][] ret = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ret[i][j] = res[i][j + n];
}
}
return ret;
}
public static double[][] operateElementarily(double[][] M) {
int n = M.length, m = M[0].length;
int rank = n - 1;
// Forward Elimination
for (int i = 0; i < n; i++) {
// select pivot
double max = 1E-9;
int maxj = -1;
for (int j = i; j < n; j++) {
double v = Math.abs(M[j][i]);
if (v > max) {
max = v;
maxj = j;
}
}
if (maxj == -1) {
rank = i - 1;
break;
}
if (maxj != i) {
double[] dum = M[i];
M[i] = M[maxj];
M[maxj] = dum;
}
double D = M[i][i];
M[i][i] = 1;
for (int j = i + 1; j < m; j++) {
M[i][j] /= D;
}
for (int j = i + 1; j < n; j++) {
double B = -M[j][i];
M[j][i] = 0;
for (int k = i + 1; k < m; k++) {
M[j][k] += M[i][k] * B;
}
}
}
// Back Substitution
for (int i = rank; i >= 0; i--) {
for (int j = rank; j >= i + 1; j--) {
double B = -M[i][j];
M[i][j] = 0;
for (int k = rank + 1; k < m; k++) {
M[i][k] += B * M[j][k];
}
}
}
return M;
}
double[][] MtPrd(double[][] A, double[][] B) {
double[][] C = new double[A.length][B[0].length];
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < B[0].length; j++) {
for (int k = 0; k < A[0].length; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return C;
}
void tr(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0