結果

問題 No.429 CupShuffle
ユーザー りあん
提出日時 2016-10-01 18:59:32
言語 C#
(csc 2.8.2.62916)
結果
AC  
実行時間 216 ms
コード長 7,759 Byte
コンパイル時間 675 ms
使用メモリ 36,524 KB
最終ジャッジ日時 2019-07-13 09:04:48

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
case1.txt AC 35 ms
16,024 KB
case2.txt AC 34 ms
18,064 KB
case3.txt AC 34 ms
18,060 KB
case4.txt AC 34 ms
18,048 KB
case5.txt AC 35 ms
13,984 KB
case6.txt AC 34 ms
16,016 KB
case7.txt AC 35 ms
16,028 KB
case8.txt AC 35 ms
16,016 KB
case9.txt AC 34 ms
16,020 KB
case10.txt AC 35 ms
16,016 KB
case11.txt AC 57 ms
25,092 KB
case12.txt AC 209 ms
32,008 KB
case13.txt AC 201 ms
27,308 KB
case14.txt AC 216 ms
36,524 KB
case15.txt AC 207 ms
28,136 KB
case16.txt AC 31 ms
13,936 KB
テストケース一括ダウンロード
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 2.8.2.62916 (2ad4aabc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #
using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

class Program
{
    const int M = 1000000007;
    const double eps = 1e-9;
    static int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
        // var sc = new Scan();
        var sc = new ScanCHK();
        int n, k, x;
        sc.Multi(out n, out k, out x);
        if (n < 2 || 100000 < n || k < 1 || 100000 < k || x < 1 || k < x) return;
        var cup = new int[n];
        var b = new int[k - x][];
        for (int i = 0; i < n; i++)
            cup[i] = i + 1;
        for (int i = 0; i < x - 1; i++)
        {
            var a = sc.IntArr.Select(y => y - 1).ToArray();
            if (a[0] >= a[1]) return;
            swap(cup, a[0], a[1]);
        }
        if (sc.Str != "? ?") return;
        for (int i = k - x - 1; i >= 0; i--)
            b[i] = sc.IntArr.Select(y => y - 1).ToArray();

        var c = sc.IntArr;
        foreach (var a in b)
        {
            if (a[0] >= a[1]) return;
            swap(c, a[0], a[1]);
        }
        var ans = new List<int>();
        for (int i = 0; i < n; i++)
        {
            if (cup[i] != c[i])
                ans.Add(i + 1);
        }
        if (cup[ans[0] - 1] != c[ans[1] - 1] || cup[ans[1] - 1] != c[ans[0] - 1]) return;
        sw.WriteLine(con(ans));
        sw.Flush();
    }

    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static void swap<T>(IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    static T Max<T>(params T[] a) { return a.Max(); }
    static T Min<T>(params T[] a) { return a.Min(); }
    static string con<T>(IEnumerable<T> a) { return string.Join(" ", a); }
    static void DBG<T>(params T[] a) { Console.WriteLine(string.Join(" ", a)); }
    static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); }
    static T[] copy<T>(IList<T> a)
    {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
class ScanCHK : Scan
{
    public new string Str
    {
        get
        {
            var s = Console.ReadLine();
            return s == s.Trim() ? s : "";
        }
    }
}
class Scan
{
    public int Int { get { return int.Parse(Str); } }
    public long Long { get { return long.Parse(Str); } }
    public double Double { get { return double.Parse(Str); } }
    public string Str { get { return Console.ReadLine().Trim(); } }
    public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } }
    public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); }
    public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } }
    public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } }
    public string[] StrArr { get { return Str.Split(); } }
    T cv<T>(string inp)
    {
        if (typeof(T).Equals(typeof(int)))    return (T)Convert.ChangeType(int.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(long)))   return (T)Convert.ChangeType(long.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(char)))   return (T)Convert.ChangeType(inp[0], typeof(T));
        return (T)Convert.ChangeType(inp, typeof(T));
    }
    public void Multi<T>(out T a) { a = cv<T>(Str); }
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    static int Mod = 1000000007;
    public void setMod(int m) { Mod = m; }
    public bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public bool[] sieve(int n)
    {
        var isp = new bool[n + 1];
        for (int i = 2; i <= n; i++) isp[i] = true;
        for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false;
        return isp;
    }
    public List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var isp = sieve(n);
        for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i);
        return prs;
    }
    public long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++)
        {
            ret[i] = new long[n];
            ret[i][i] = 1;
        }
        return ret;
    }
    public long[][] powmat(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = powmat(A, n / 2);
        if ((n & 1) == 0) return mulmat(t, t);
        return mulmat(mulmat(t, t), A);
    }
    public long[] mulmat(long[][] A, long[] x)
    {
        int n = A.Length, m = x.Length;
        var ans = new long[n];
        for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i] = (ans[i] + x[j] * A[i][j]) % Mod;
        return ans;
    }
    public long[][] mulmat(long[][] A, long[][] B)
    {
        int n = A.Length, m = B[0].Length, l = B.Length;
        var ans = new long[n][];
        for (int i = 0; i < n; i++)
        {
            ans[i] = new long[m];
            for (int j = 0; j < m; j++) for (int k = 0; k < l; k++) ans[i][j] = (ans[i][j] + A[i][k] * B[k][j]) % Mod;
        }
        return ans;
    }
    public long[] addmat(long[] x, long[] y)
    {
        int n = x.Length;
        var ans = new long[n];
        for (int i = 0; i < n; i++) ans[i] = (x[i] + y[i]) % Mod;
        return ans;
    }
    public long[][] addmat(long[][] A, long[][] B)
    {
        int n = A.Length, m = A[0].Length;
        var ans = new long[n][];
        for (int i = 0; i < n; i++) ans[i] = addmat(A[i], B[i]);
        return ans;
    }
    public long powmod(long a, long b)
    {
        if (a >= Mod) return powmod(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = powmod(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public long inv(long a) { return powmod(a, Mod - 2); }
    public long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    public long lcm(long a, long b) { return a * (b / gcd(a, b)); }
    public long Comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        var numerator = new int[r];
        var denominator = new int[r];
        for (int k = 0; k < r; k++)
        {
            numerator[k] = n - r + k + 1;
            denominator[k] = k + 1;
        }
        for (int p = 2; p <= r; p++)
        {
            int pivot = denominator[p - 1];
            if (pivot > 1)
            {
                int offset = (n - r) % p;
                for (int k = p - 1; k < r; k += p)
                {
                    numerator[k - offset] /= pivot;
                    denominator[k] /= pivot;
                }
            }
        }
        long result = 1;
        for (int k = 0; k < r; k++) if (numerator[k] > 1) result = result * numerator[k] % Mod;
        return result;
    }
}
0