結果
問題 | No.426 往復漸化式 |
ユーザー | pekempey |
提出日時 | 2016-10-05 05:37:00 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 65 ms / 5,000 ms |
コード長 | 3,484 bytes |
コンパイル時間 | 6,103 ms |
コンパイル使用メモリ | 196,584 KB |
実行使用メモリ | 23,224 KB |
最終ジャッジ日時 | 2024-11-21 17:08:36 |
合計ジャッジ時間 | 5,543 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 22 |
コンパイルメッセージ
main.cpp: In function ‘int in()’: main.cpp:129:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 129 | scanf("%d", &a); | ~~~~~^~~~~~~~~~ main.cpp: In function ‘int main()’: main.cpp:154:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 154 | scanf("%s", str); | ~~~~~^~~~~~~~~~~
ソースコード
#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; uint32_t inv; int r2; int one; int reduce(uint64_t x) { uint64_t y = uint64_t(uint32_t(x) * inv) * mod; return int(x >> 32) + mod - int(y >> 32); } int transform(int n) { return reduce(int64_t(n) * r2); } int normalize(int n) { return n >= mod ? n - mod : n; } void init_montgomery_reduction() { inv = 1; for (int i = 0; i < 5; ++i) inv *= 2 - inv * uint32_t(mod); r2 = -uint64_t(mod) % mod; one = transform(1); } int modadd(int a, int b) { return (a += b - mod) < 0 ? a + mod : a; } template<int H, int W> struct Matrix { int a[H][W] = {}; static Matrix I() { Matrix<H, W> res; for (int i = 0; i < H; i++) res[i][i] = one; return res; } Matrix operator+(const Matrix<H, W> &b) const { Matrix<H, W> s; for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { s.a[i][j] = modadd(a[i][j], b.a[i][j]); } } return s; } template<int N> Matrix<H, N> operator*(const Matrix<W, N> &b) const { Matrix<H, N> s; for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < N; j++) { s[i][j] = modadd(s[i][j], reduce(int64_t(a[i][k]) * b.a[k][j])); } } } return s; } int *operator[](int i) { return a[i]; } }; const int N = 1 << 17; struct Tuple { Matrix<3, 3> A; Matrix<2, 2> B; Matrix<2, 3> S; Tuple() { A = Matrix<3, 3>::I(); B = Matrix<2, 2>::I(); } Tuple(Matrix<3, 3> A, Matrix<2, 2> B, Matrix<2, 3> S) : A(A), B(B), S(S) {} Tuple operator*(const Tuple &r) const { return Tuple(r.A * A, B * r.B, S + B * r.S * A); } }; Tuple seg[N * 2]; void build() { for (int k = 0; k < N; k++) { for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { seg[k + N].S[i][j] = transform(k * 6 + i * 3 + j); } } for (int i = 0; i < 3; i++) seg[k + N].A[i][i] = one; for (int i = 0; i < 2; i++) seg[k + N].B[i][i] = one; } for (int k = N - 1; k > 0; k--) { seg[k] = seg[k * 2 + 0] * seg[k * 2 + 1]; } } void update(int k) { k += N; while (k > 1) { k >>= 1; seg[k] = seg[k * 2 + 0] * seg[k * 2 + 1]; } } Tuple query(int l, int r) { Tuple L, R; for (l += N, r += N; l < r; l >>= 1, r >>= 1) { if (l & 1) L = L * seg[l++]; if (r & 1) R = seg[--r] * R; } return L * R; } int in() { int a; scanf("%d", &a); return a; } int in_t() { return transform(in()); } int main() { init_montgomery_reduction(); int n = in(); Matrix<3, 1> va; Matrix<2, 1> vb; for (int i = 0; i < 3; i++) va[i][0] = in_t(); for (int i = 0; i < 2; i++) vb[i][0] = in_t(); build(); int q = in(); for (int ii = 0; ii < q; ii++) { char str[16]; scanf("%s", str); if (str[0] == 'a') { int k = in(); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) seg[k + N].A[i][j] = in_t(); } update(k); } else if (str[0] == 'b') { int k = in(); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) seg[k + N].B[i][j] = in_t(); } update(k); } else if (str[1] == 'a') { int k = in(); auto ans = query(0, k).A * va; for (int i = 0; i < 3; i++) { printf("%d ", normalize(reduce(ans[i][0]))); } printf("\n"); } else if (str[1] == 'b') { int k = in(); auto X = query(k + 1, n + 1); auto Y = query(0, k + 1); auto ans = X.B * vb + X.S * Y.A * va; for (int i = 0; i < 2; i++) { printf("%d ", normalize(reduce(ans[i][0]))); } printf("\n"); } } }