結果
問題 |
No.194 フィボナッチ数列の理解(1)
|
ユーザー |
![]() |
提出日時 | 2015-02-13 02:12:11 |
言語 | Python2 (2.7.18) |
結果 |
AC
|
実行時間 | 922 ms / 5,000 ms |
コード長 | 1,414 bytes |
コンパイル時間 | 110 ms |
コンパイル使用メモリ | 7,040 KB |
実行使用メモリ | 101,164 KB |
最終ジャッジ日時 | 2024-06-23 19:39:57 |
合計ジャッジ時間 | 14,843 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
# -*- coding: utf-8 -*- # 想定解(2) def matmult(A,B): # 正方行列A*B n=len(A) C=[[0 for i in range(n)] for j in range(n)] for x in range(n): for z in range(n): for y in range(n): C[x][y] += A[x][z]*B[z][y] C[x][y] %= mo; return list(C) def matpow(A,p): # 正方行列A^p n=len(A) A=list(A) R=[[0 for i in range(n)] for j in range(n)] for i in range(n): R[i][i]=1 while p: if p%2: R = matmult(A,R) A=matmult(A,A) p >>= 1 return R def GetSum(A,x): # S[x]を求める # 行列累乗 Ap = matpow(A,x-N) ret = 0 for i in range(N+1): ret += S[N-i] * Ap[0][i] return ret % mo N,K = map(int, raw_input().strip().split()) F = map(int, raw_input().strip().split()) F.insert(0,0) mo = 1000000007 S = [0] for i in range(1,N+1): S.append((S[i-1]+F[i]) % mo) if N > 50: # こちらは想定解(1)と同じです for i in range(N+1,K+1): F.append((S[i-1]-S[i-N-1]) % mo) S.append((S[i-1]+F[i]) % mo) print "%d %d" % (F[K], S[K]) else: # Sに関する行列累乗を使うケース A=[[0 for i in range(N+1)] for j in range(N+1)] # S[i] = F[i] + S[i-1] # = sum(F[i-1]...F[i-N]) + S[i-1] # = S[i-1] + S[i-1] - S[i-1-N] A[0][0] = 2 A[0][N] = mo-1 for i in range(1,N+1): A[i][i-1]=1 # S[K]とS[K-1]を求める RetS = GetSum(A,K) PreS = GetSum(A,K-1) # F[K]=S[K]-S[K-1] RetF = (RetS - PreS + mo) % mo print "%d %d" % (RetF, RetS)