結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | kmjp |
提出日時 | 2015-02-13 02:12:51 |
言語 | PyPy2 (7.3.15) |
結果 |
AC
|
実行時間 | 176 ms / 5,000 ms |
コード長 | 1,410 bytes |
コンパイル時間 | 1,952 ms |
コンパイル使用メモリ | 76,304 KB |
実行使用メモリ | 230,348 KB |
最終ジャッジ日時 | 2024-06-23 19:40:04 |
合計ジャッジ時間 | 5,550 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 75 ms
75,708 KB |
testcase_01 | AC | 84 ms
76,684 KB |
testcase_02 | AC | 106 ms
78,012 KB |
testcase_03 | AC | 86 ms
77,472 KB |
testcase_04 | AC | 94 ms
77,868 KB |
testcase_05 | AC | 90 ms
77,476 KB |
testcase_06 | AC | 90 ms
77,340 KB |
testcase_07 | AC | 97 ms
77,872 KB |
testcase_08 | AC | 86 ms
77,196 KB |
testcase_09 | AC | 94 ms
78,072 KB |
testcase_10 | AC | 88 ms
77,356 KB |
testcase_11 | AC | 90 ms
77,988 KB |
testcase_12 | AC | 90 ms
77,336 KB |
testcase_13 | AC | 88 ms
77,464 KB |
testcase_14 | AC | 86 ms
77,324 KB |
testcase_15 | AC | 102 ms
77,476 KB |
testcase_16 | AC | 98 ms
77,464 KB |
testcase_17 | AC | 87 ms
77,568 KB |
testcase_18 | AC | 98 ms
77,716 KB |
testcase_19 | AC | 102 ms
77,600 KB |
testcase_20 | AC | 85 ms
77,100 KB |
testcase_21 | AC | 176 ms
230,348 KB |
testcase_22 | AC | 76 ms
75,680 KB |
testcase_23 | AC | 87 ms
81,676 KB |
testcase_24 | AC | 132 ms
146,556 KB |
testcase_25 | AC | 128 ms
141,376 KB |
testcase_26 | AC | 126 ms
138,464 KB |
testcase_27 | AC | 142 ms
152,276 KB |
testcase_28 | AC | 100 ms
92,980 KB |
testcase_29 | AC | 165 ms
209,608 KB |
testcase_30 | AC | 106 ms
78,112 KB |
testcase_31 | AC | 75 ms
75,252 KB |
testcase_32 | AC | 100 ms
77,576 KB |
testcase_33 | AC | 95 ms
77,444 KB |
testcase_34 | AC | 94 ms
77,372 KB |
testcase_35 | AC | 102 ms
77,472 KB |
testcase_36 | AC | 102 ms
77,316 KB |
testcase_37 | AC | 90 ms
77,476 KB |
testcase_38 | AC | 104 ms
77,512 KB |
testcase_39 | AC | 92 ms
77,584 KB |
ソースコード
# -*- coding: utf-8 -*- # 想定解(1) def matmult(A,B): # 正方行列A*B n=len(A) C=[[0 for i in range(n)] for j in range(n)] for x in range(n): for z in range(n): for y in range(n): C[x][y] += A[x][z]*B[z][y] C[x][y] %= mo; return list(C) def matpow(A,p): # 正方行列A^p n=len(A) A=list(A) R=[[0 for i in range(n)] for j in range(n)] for i in range(n): R[i][i]=1 while p: if p%2: R = matmult(A,R) A=matmult(A,A) p >>= 1 return R N,K = map(int, raw_input().strip().split()) F = map(int, raw_input().strip().split()) F.insert(0,0) mo = 1000000007 # まずS[N]までを求める S = [0] for i in range(1,N+1): S.append((S[i-1]+F[i]) % mo) if N > 50: # 累積和を使うケース # 順次F[i],S[i]を求める # F[i] = sum(F[i-1]...F[i-N])=S[i-1]-S[i-N-1] for i in range(N+1,K+1): F.append((S[i-1]-S[i-N-1]) % mo) S.append((S[i-1]+F[i]) % mo) print "%d %d" % (F[K], S[K]) else: # 行列累乗を使うケース A=[[0 for i in range(N+1)] for j in range(N+1)] # F[i] = sum(F[i-1]...F[i-N]) for i in range(N): A[1][i+1] = 1 # S[i] = S[i-1] + F[i] for i in range(N+1): A[0][i] = 1 for i in range(N-1): A[i+2][i+1] = 1 # 行列累乗 Ap = matpow(A,K-N) # Ap * Fを求める RetF = 0 RetS = S[N]*Ap[0][0] for i in range(1,N+1): RetF += Ap[1][i] * F[N+1-i] RetS += Ap[0][i] * F[N+1-i] print "%d %d" % (RetF % mo, RetS % mo)