結果

問題 No.426 往復漸化式
ユーザー りあんりあん
提出日時 2016-10-13 00:51:26
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 1,660 ms / 5,000 ms
コード長 10,694 bytes
コンパイル時間 1,122 ms
コンパイル使用メモリ 121,904 KB
実行使用メモリ 223,456 KB
最終ジャッジ日時 2024-11-22 02:07:29
合計ジャッジ時間 25,497 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 32 ms
19,328 KB
testcase_01 AC 35 ms
20,736 KB
testcase_02 AC 36 ms
20,736 KB
testcase_03 AC 77 ms
25,088 KB
testcase_04 AC 71 ms
24,960 KB
testcase_05 AC 369 ms
52,224 KB
testcase_06 AC 349 ms
52,096 KB
testcase_07 AC 1,097 ms
181,460 KB
testcase_08 AC 1,086 ms
181,860 KB
testcase_09 AC 1,438 ms
187,344 KB
testcase_10 AC 1,451 ms
187,356 KB
testcase_11 AC 1,056 ms
161,368 KB
testcase_12 AC 1,411 ms
162,640 KB
testcase_13 AC 1,660 ms
191,048 KB
testcase_14 AC 1,406 ms
162,908 KB
testcase_15 AC 1,137 ms
160,620 KB
testcase_16 AC 1,606 ms
160,868 KB
testcase_17 AC 1,639 ms
160,996 KB
testcase_18 AC 1,612 ms
160,856 KB
testcase_19 AC 930 ms
161,368 KB
testcase_20 AC 1,199 ms
162,144 KB
testcase_21 AC 1,564 ms
223,456 KB
testcase_22 AC 1,196 ms
162,144 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;

class Program
{
    class Nod { public long[][] A, B, S; }
    static Nod init()
    {
        var mt = new mymath();
        var ret = new Nod();
        ret.A = mt.E(3);
        ret.B = mt.E(2);
        ret.S = new long[2][];
        for (int i = 0; i < 2; i++) ret.S[i] = new long[3];

        return ret;
    }
    static Nod init(int i)
    {
        var ret = init();
        for (int j = 0; j < 2; j++)
            for (int k = 0; k < 3; k++)
                ret.S[j][k] = i * 6 + j * 3 + k;

        return ret;
    }
    const int M = 1000000007;
    const double eps = 1e-9;
    static int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
        var sc = new Scan();
        // var sc = new ScanCHK();
        var mt = new mymath();
        int n = sc.Int;
        var sgA = new Segtree<long[][]>(n + 2, (x, y) => mt.mulmat(y, x), mt.E(3));
        var sgB = new Segtree<long[][]>(n + 2, (x, y) => mt.mulmat(x, y), mt.E(2));
        var sgP = new Segtree<Nod>(n + 2, (x, y) =>
        {
            Nod ret = new Nod();
            ret.A = mt.mulmat(y.A, x.A);
            ret.B = mt.mulmat(x.B, y.B);
            ret.S = mt.addmat(mt.mulmat(x.B, mt.mulmat(y.S, x.A)), x.S);
            return ret;
        }, init());

        for (int i = 0; i <= n; i++) sgP.assign_without_update(i, init(i));

        sgP.all_update();

        var a = sc.LongArr;
        var b = sc.LongArr;
        int q = sc.Int;
        for (int i = 0; i < q; i++)
        {
            var inp = sc.StrArr;
            int ind = int.Parse(inp[1]);
            Nod nod = sgP.look(ind);
            switch (inp[0])
            {
                case "a":
                    for (int j = 0; j < 3; j++)
                        for (int k = 0; k < 3; k++)
                            nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]);

                    sgA.update(ind, nod.A);
                    sgP.update(ind, nod);
                    break;
                case "b":
                    for (int j = 0; j < 2; j++)
                        for (int k = 0; k < 2; k++)
                            nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]);

                    sgB.update(ind, nod.B);
                    sgP.update(ind, nod);
                    break;
                case "ga":
                    DBG(mt.mulmat(sgA.run(0, ind), a));
                    break;
                case "gb":
                    DBG(mt.addmat(mt.mulmat(sgB.run(ind + 1, n + 1), b), mt.mulmat(sgP.run(ind + 1, n + 1).S, mt.mulmat(sgA.run(0, ind + 1), a))));
                    break;
            }
        }
        sw.Flush();
    }

    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static void swap<T>(IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    static T Max<T>(params T[] a) { return a.Max(); }
    static T Min<T>(params T[] a) { return a.Min(); }
    static string con<T>(IEnumerable<T> a) { return string.Join(" ", a); }
    static void DBG<T>(params T[] a) { Console.WriteLine(string.Join(" ", a)); }
    static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); }
    static T[] copy<T>(IList<T> a)
    {
        int n = a.Count;
        var ret = new T[n];
        for (int i = 0; i < n; i++) ret[i] = a[i];
        return ret;
    }
}
class ScanCHK : Scan
{
    public new string Str
    {
        get
        {
            var s = Console.ReadLine();
            return s == s.Trim() ? s : "";
        }
    }
}
class Scan
{
    public int Int { get { return int.Parse(Str); } }
    public long Long { get { return long.Parse(Str); } }
    public double Double { get { return double.Parse(Str); } }
    public string Str { get { return Console.ReadLine().Trim(); } }
    public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } }
    public int[] IntArrWithSep(char sep) { return Str.Split(sep).Select(int.Parse).ToArray(); }
    public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } }
    public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } }
    public string[] StrArr { get { return Str.Split(); } }
    T cv<T>(string inp)
    {
        if (typeof(T).Equals(typeof(int)))    return (T)Convert.ChangeType(int.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(long)))   return (T)Convert.ChangeType(long.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(double))) return (T)Convert.ChangeType(double.Parse(inp), typeof(T));
        if (typeof(T).Equals(typeof(char)))   return (T)Convert.ChangeType(inp[0], typeof(T));
        return (T)Convert.ChangeType(inp, typeof(T));
    }
    public void Multi<T>(out T a) { a = cv<T>(Str); }
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    int Mod = 1000000007;
    public void setMod(int m) { Mod = m; }
    public bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public bool[] sieve(int n)
    {
        var isp = new bool[n + 1];
        for (int i = 2; i <= n; i++) isp[i] = true;
        for (int i = 2; i * i <= n; i++) if (isp[i]) for (int j = i * i; j <= n; j += i) isp[j] = false;
        return isp;
    }
    public List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var isp = sieve(n);
        for (int i = 2; i <= n; i++) if (isp[i]) prs.Add(i);
        return prs;
    }
    public long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++)
        {
            ret[i] = new long[n];
            ret[i][i] = 1;
        }
        return ret;
    }
    public long[][] powmat(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = powmat(A, n / 2);
        if ((n & 1) == 0) return mulmat(t, t);
        return mulmat(mulmat(t, t), A);
    }
    public long dot(long[] x, long[] y)
    {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public long[][] trans(long[][] A)
    {
        int n = A[0].Length, m = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++)
        {
            ret[i] = new long[m];
            for (int j = 0; j < m; j++) ret[i][j] = A[j][i];
        }
        return ret;
    }
    public long[] mulmat(long[][] A, long[] x)
    {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public long[][] mulmat(long[][] A, long[][] B)
    {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mulmat(Bt, A[i]);
        return ret;
    }
    public long[] addmat(long[] x, long[] y)
    {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public long[][] addmat(long[][] A, long[][] B)
    {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = addmat(A[i], B[i]);
        return ret;
    }
    public long powmod(long a, long b)
    {
        if (a >= Mod) return powmod(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = powmod(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public long inv(long a) { return powmod(a, Mod - 2); }
    public long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    public long lcm(long a, long b) { return a * (b / gcd(a, b)); }
    public long comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        var numerator = new int[r];
        var denominator = new int[r];
        for (int k = 0; k < r; k++)
        {
            numerator[k] = n - r + k + 1;
            denominator[k] = k + 1;
        }
        for (int p = 2; p <= r; p++)
        {
            int pivot = denominator[p - 1];
            if (pivot > 1)
            {
                int offset = (n - r) % p;
                for (int k = p - 1; k < r; k += p)
                {
                    numerator[k - offset] /= pivot;
                    denominator[k] /= pivot;
                }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numerator[k] > 1) ret = ret * numerator[k] % Mod;
        return ret;
    }
}
class Segtree<T>
{
    int n, s, t;
    T[] tree;
    Func<T, T, T> f;
    T exnum;
    public Segtree(int m, Func<T, T, T> f, T ex)
    {
        this.f = f;
        this.exnum = ex;
        n = 1;
        while (n < m) n <<= 1;

        tree = new T[(n << 1) - 1];
        for (int i = 0; i < tree.Length; i++) tree[i] = ex;
    }
    public Segtree(int m, T ini, Func<T, T, T> f, T ex) : this(m, f, ex)
    {
        for (int i = 0; i < m; ++i) tree[i + n - 1] = ini;
        all_update();
    }
    public void assign_without_update(int j, T x) { tree[j + n - 1] = x; }
    public void update(int j, T x)
    {
        int i = j + n - 1;
        tree[i] = x;
        while (i > 0)
        {
            i = (i - 1) >> 1;
            tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]);
        }
    }
    public void all_update()
    {
        for (int i = n - 2; i >= 0; i--) tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]);
    }
    public T look(int i) { return tree[i + n - 1]; }

    // [s, t)
    public T run(int s, int t)
    {
        this.s = s;
        this.t = t;
        return q(0, 0, n);
    }
    T q(int k, int l, int r)
    {
        if (r <= s || t <= l) return exnum;
        if (s <= l && r <= t) return tree[k];

        return f(q((k << 1) + 1, l, (l + r) >> 1), q((k + 1) << 1, (l + r) >> 1, r));
    }
}
0