結果

問題 No.109 N! mod M
ユーザー kimiyukikimiyuki
提出日時 2016-10-18 19:58:39
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 2,059 bytes
コンパイル時間 893 ms
コンパイル使用メモリ 81,432 KB
実行使用メモリ 10,024 KB
最終ジャッジ日時 2024-11-22 12:39:55
合計ジャッジ時間 23,074 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 TLE -
testcase_04 TLE -
testcase_05 AC 3,099 ms
6,816 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
#define repeat(i,n) for (int i = 0; (i) < (n); ++(i))
#define repeat_from(i,m,n) for (int i = (m); (i) < (n); ++(i))
typedef long long ll;
using namespace std;
vector<int> sieve_of_eratosthenes(int n) { // enumerate primes in [2,n] with O(n log log n)
    vector<bool> is_prime(n+1, true);
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i*i <= n; ++i)
        if (is_prime[i])
            for (int k = i+i; k <= n; k += i)
                is_prime[k] = false;
    vector<int> primes;
    for (int i = 2; i <= n; ++i)
        if (is_prime[i])
            primes.push_back(i);
    return primes;
}
vector<ll> factors(ll n, vector<int> const & primes) {
    vector<ll> result;
    for (int p : primes) {
        if (n < p *(ll) p) break;
        while (n % p == 0) {
            result.push_back(p);
            n /= p;
        }
    }
    if (n != 1) result.push_back(n);
    return result;
}
ll powi(ll x, ll y, ll p) { // O(log y)
    assert (y >= 0);
    x = (x % p + p) % p;
    ll z = 1;
    for (ll i = 1; i <= y; i <<= 1) {
        if (y & i) z = z * x % p;
        x = x * x % p;
    }
    return z;
}
ll inv(ll x, ll p) { // p must be a prime, O(log p)
    assert ((x % p + p) % p != 0);
    return powi(x, p-2, p);
}
int main() {
    const vector<int> primes = sieve_of_eratosthenes(sqrt(1e9) + 3);
    int t; cin >> t;
    while (t --) {
        ll n, m; cin >> n >> m;
        assert (0 <= n and n <= 1e9);
        assert (1 <= m and m <= 1e9);
        assert (m <= n + 1e5);
        vector<ll> ps = factors(m, primes);
        ll ans;
        if (ps.empty()) {
            ans = 0;
        } else if (ps.size() == 1) {
            ans = m - 1;
            repeat_from (i,n+1,m) {
                ans = ans * inv(i, m) % m;
            }
        } else {
            ans = 1;
            repeat_from (i,1,n+1) {
                ans = ans * (i+1) % m;
                if (ans == 0) break;
            }
        }
        cout << ans << endl;
    }
    return 0;
}
0